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Abstract

This paper develops a sufficient statistics approach for estimating the role of search frictions in

wage dispersion and lifecycle wage growth. We show how the wage dynamics of displaced workers

are directly informative of both for a large class of search models. Specifically, the correlation

between pre- and post-displacement wages is informative of frictional wage dispersion. Furthermore,

the fraction of displaced workers who suffer a wage loss is informative of frictional wage growth and

job-to-job mobility, independent of the job-offer distribution and other labor-market parameters.

Applying our methodology to US data, we find that search frictions account for less than 20 percent

of wage dispersion. In addition, we estimate that between 40 to 80 percent of workers experience

no frictional wage growth during an employment spell. Our approach allows us to estimate how

frictions change over time. We find that frictional wage dispersion has declined substantially since

1980 and that frictional wage growth, while low, is more important towards the end of expansionary

periods. We finish by estimating two versions of a random search model to show how at least two

different mechanisms—involuntary job transitions or compensating differentials—can reconcile our

results with the job-to-job mobility seen in the data. Regardless of the mechanism, the estimated

models show that frictional wage growth accounts for about 15 percent of lifecycle wage growth.
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1 Introduction

Search models are considered foundational models in the macro-economist’s toolbox (Blanchard

2018). These models have been used to help economists understand, among other things, wage

inequality (e.g. Mortensen 2005), wage growth (e.g. Burdett and Mortensen 1998), the allocation

of workers to firms (e.g. Shimer and Smith 2000), and the Philips Curve (e.g. Moscarini and

Postel-Vinay 2019). Two core elements of search models are important for understanding the role

of search frictions in labor markets. First, how relatively disperse are the job opportunities that

workers face? Second, how easily do workers find better job opportunities during an employment

spell? In other words, how important are the frictional components of wage dispersion and wage

growth. These elements are complementary for many questions that search models seek to answer,

but are not easy to identify in typical labor market datasets.

In the spirit of the sufficient statistics literature, we propose two simple statistics that are in-

formative of frictional wage dispersion and frictional wage growth in search models.1 The statistics

have the advantage that they only require information on the wage dynamics of displaced workers

and can be estimated from cross-sectional or short panel datasets. The first main identifying as-

sumption is that conditional on worker type the post-displacement wage is statistically independent

of the pre-displacement wage. The second main identifying assumption is that we can construct a

sample of workers that have been exogeneously displaced.2 Inference using these statistics is inde-

pendent of wage offer distributions and other labor market parameters. While the empirical wage

losses of displaced workers has been studied extensively and has also been used in the estimation

of search models, the main contribution of this paper is different. First, we show how these statis-

tics are directly informative of frictional wage dispersion, frictional wage growth, and job-to-job

mobility parameters under minimal assumptions. Second, we propose an empirical strategy and

tests that lend credibility to this approach more generally (i.e. satisfy the assumptions), whether

using these statistics directly or as a part of a structural estimation strategy.

The proposed wage-dispersion statistic is the correlation between the pre- and post-displacement

wage. We show that the wage-dispersion statistic describes the fraction of the variance of wages

accounted for by the between-worker variation in the cross-sectional wage distribution. The remain-

ing variation can be considered an upper bound for the contribution of frictional wage dispersion

as it could include variation due to firm-specific human capital, measurement error, compensating

wage differentials, etc. The wage-dispersion statistic is informative of frictional wage dispersion

across most search models in the literature.

The proposed wage-growth statistic is the fraction of displaced workers earning lower wages

after displacement. This direct measure of frictional wage growth is related to the average wage

loss commonly used in the literature. The fraction is a more direct measure of how far workers have

1See Chetty (2009) for a survey of the sufficient statistics literature.
2In other words, displacement is independent of the worker’s pre-displacement wage, conditional on worker type. We

show empirical evidence supporting this assumption in Section 3.2.
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climbed the wage ladder as it is not sensitive to details of the offer distribution, which the average

wage loss is. Using wage dynamics to make inference on job-to-job mobility will depend more on

the details of the model, but we can still make inference for a large class of models. In order to

make inference about job-to-job mobility, we need to additionally assume, first, that jobs are rank

preserving;3 second, that workers choose the job with the higher wage; and, third, workers draw

from the same offer distribution independent of employment status. One advantage of our approach

is that it does not require job arrival rates and wage distributions to be time-invariant; only that

the rankings of jobs are time-invariant.4 Without making additional assumptions about the offer

arrival technology (e.g. a Poisson process), we show that the wage-growth statistic can be used to

place bounds on the number of job offers workers receive during an employment spell. In order to

compare our results to a common measure of job-to-job mobility in the literature, we show how

the wage-growth statistic can be directly related to the ratio of the Poisson rate of job offers while

employed to the Poisson rate of job separations, often represented in the literature by κ = λe/δ.

The ratio κ is a key parameter in search models as it describes labor market competition and

wage growth.5 As before, wage distributions and other labor market parameters—such as κ—are

allowed to be worker-specific and we do not need to make steady-state assumptions. Two important

classes of models, sequential-auction models and compensating-differentials models, may violate

the assumption that workers always choose the job with the higher wage.6 We show that under

certain conditions, the inferred κ from the wage-growth statistic is an upper bound for the κ in

a sequential-auction model. In Section 4, we show that the wage-growth statistic is, in practice,

informative about frictional wage growth in compensating differential models.

We estimate the statistics using two U.S. datasets: the Displaced Worker Supplement to the

Current Population Survey (CPS-DWS) and the Survey of Income and Program Participation

(SIPP). The CPS-DWS is a cross-sectional dataset that identifies workers who were displaced by

a plant closure and measures weekly wages. The SIPP measures monthly wages and identifies

workers who were displaced by permanent layoffs, slack work conditions, or firm bankruptcy. We

view the datasets as complementary, since they survey displaced workers differently (retrospective

vs. panel) and record post-displacement wages at different points in time. In both datasets, we

select a sample of full-time private sector workers who were displaced and found full-time private

sector jobs after displacement. We test and do not find any difference between the pre-displacement

wages in our sample and the wages of cross-sectional workers. We also test and do not find evidence

that workers with higher pre-displacement wages wait longer to accept a job. We estimate both

statistics, with and without measurement error corrections. We find a correlation between pre-

3Rank preserving jobs means that if a worker prefers job A over job B at a given time, then the worker will always
prefer job A over job B.

4The time-invariant ranking assumption is consistent with the search literature studying business cycles and human
capital accumulation. See e.g. Hagedorn and Manovskii (2013) and Bagger, Fontaine, Postel-Vinay, and Robin (2014).

5See e.g. Burdett and Mortensen (1998).
6See e.g. Cahuc, Postel-Vinay, and Robin (2006) for a sequential auction model and Taber and Vejlin (2020) for a

compensating differential model.
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displacement and post-displacement wages (the wage-dispersion statistic) of 0.76 and 0.72 in the

SIPP and CPS-DWS, respectively. After correcting for measurement error, we infer that frictional

wage dispersion accounts for less than 20% of the variance of wages. In addition, we find that

about 58% of displaced workers earn lower wages after displacement in both the SIPP and CPS-

DWS (the wage-growth statistic).78 Turning to job-to-job mobility, the estimated wage-growth

statistics imply that 40% − 80% percent of workers receive zero job offers during an employment

spell (i.e. experience no frictional wage growth). Assuming a Poisson offer arrival technology, the

wage-growth statistic implies values of κ of 0.87 and 0.73, for the SIPP and CPS-DWS respectively.

In other words, workers are more likely to receive a job separation shock than a job offer.

We also estimate the statistics by education groups and across time. While the wage-dispersion

statistic does not differ much by education, the wage-growth statistic is substantially lower for

college graduates. The estimates for college graduates imply that at least 60 percent of college

graduates receive zero job offers during an employment spell and are at least twice as likely to

receive a job separation shock than a job offer. Finally, we find that frictional wage dispersion has

been declined by about half relative to total wage dispersion over the last 30 years.

Our estimates of low relative offer rates may seem to be at odds with the large job-to-job

flows observed in the US labor market.9 We consider two mechanisms that can reconcile our

estimated wage-growth statistic and observed job-to-job transition rates: involuntary job offers

and compensating differentials.10 We show how an involuntary job offer ”resets” the frictional

wage growth process and we relate our wage-growth statistic to these classes of models with minor

modifications. A compensating differential model is one where jobs offer a non-pecuniary benefit

and workers may change jobs in order to get a higher non-pecuniary benefit even if it means

a lower wage. Both extensions can accommodate large job-to-job flows with low frictional wage

growth. Both mechanisms highlight that one should be careful inferring frictional wage growth

from job-to-job transition rates alone.

We proceed by setting up and estimating two versions of a random search model with two-sided

heterogeneity and general human capital. The first version includes involuntary job offers and the

second version includes compensating differentials. The goals of structurally estimating the two

models are three-fold. First, we show that either of the two extensions can reconcile our results with

observed transition rates. Second, we show that inferring job offer rates from observed transition

rates is highly model-dependent. In other words, a large set of job offer rates is consistent with

the same observed job transition rate and frictional wage growth rate depending on modelling

7Our estimates for the average wage loss from displacement are similar to the literature. We find average wage losses
of about 7% and 9% for workers with at least one and three years of tenure, respectively. See Table 7 for more information.

8This is not the first paper to find that a significant fraction of workers earn higher wages after displacement. See e.g.
Fallick, Haltiwanger, McEntarfer, and Staiger (2019), Hyatt and McEntarfer (2012), and Farber (2017).

9Using job-to-unemployment and job-to-job flows implies a κ that is 4.5 times higher that what we estimate from the
wage-growth statistic. See footnote 53.

10An involuntary job offer is one where the outside option for the worker is not staying with the current employer,
but to go to unemployment. One can think of this as capturing advance notice or workers having to find a new job for
personal reasons (e.g. spouse needs to move).
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assumptions. Finally, we use the models to quantify the fraction of total wage growth over the

life-cycle explained by frictional wage growth.

Both estimated models match the frictional wage statistics and the observed transition rates in

the data. The inferred job offer rates when employed are quite different though. The compensating-

differentials model estimates a job offer rate that is three times higher than the model with invol-

untary job offers. This is expected as workers accept a higher fraction of job offers if their frictional

wage growth path is occasionally reset by involuntary job offers. Since workers accept a higher frac-

tion of job offers, a lower job offer rate is needed to match the observed job-to-job transition rate.

Regardless of the mechanism, the estimated models show that frictional wage growth accounts for

about 15 percent of lifecycle wage growth and frictional wage dispersion accounts for about 16-17

percent of wage dispersion over the first 25 years of the lifecycle. Finally, we estimate models with

correlated productivity and non-pecuniary benefits, differences in job offer distributions between

employed and unemployed, and a joint model with both non-pecuniary benefits and involuntary

job offers. All models give similar results regarding the importance of frictions.

This paper relates to a large empirical literature studying frictional wage dispersion and fric-

tional wage growth. The papers most related to ours study these topics without estimating a full

structural model (e.g. without assuming functional forms for the wage offer distribution). One of

the most well-known examples is Hornstein, Krusell, and Violante (2011), which use unemployment

durations (i.e. job offer rates) to infer the importance of frictional wage dispersion. On one hand,

they find that statistics of labor-market turnover rates imply very little frictional wage disper-

sion in a basic search model without on-the-job search. On the other hand, they find that models

with on-the-job search can be consistent with both the turnover rates and important contributions

from frictional dispersion. Alvarez, Borovickova, and Shimer (2014) use an estimator related to

our wage-dispersion statistic to study heterogeneity in unemployment duration and wages using

data on workers who experience two different unemployment spells in administrative data from

Austria. Lastly, Barlevy (2008) uses detailed job history data to identify κ, which allows him to

non-parametrically estimate the offer distribution in the Burdett-Mortensen model.11 Finally, our

paper is also connected to the empirical literature pioneered by Abowd, Kramarz, and Margolis

(1999) (AKM) that estimate fixed effect models with firm and worker fixed effects. The estimated

models using the AKM framework are typically used to answer questions about the drivers of wage

dispersion through different decompositions of wage variation. Our approach has several advan-

tages compared to the AKM approach, since we do not need to worry about incidental parameters

bias for the fixed effects, endogenous mobility, or assuming fixed types over long periods. Thus,

the ability of our method to deal with short panels is an important improvement over AKM. Our

methodology complements the literature more generally in using wage statistics instead of labor-

market turnover and it can be estimated using publicly-available labor-market datasets compared

to e.g. AKM, which require detailed matched employer-employee datasets.

11Another recent example is Gottfries and Teulings (2021), who use variation in job-finding rates and time since last
lay-off to separate frictional wage growth from human capital wage growth.
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This paper relates to a parallel literature estimating structural search models to understand

the role of frictional wage dispersion.12 Some of the earliest contributions to this literature are

Wolpin (1992), Van den Berg and Ridder (1998) and Bontemps, Robin, and van den Berg (1999).

Wolpin (1992) investigates the first five years post-schooling for blacks and whites with a high

school degree and finds that the wage offer distribution is more compressed for blacks, while

they have higher off and on the job offer rates. The latter two papers extend the wage posting

model of Burdett and Mortensen (1998) and add firm heterogeneity in productivity. Van den

Berg and Ridder (1998) assumes that worker heterogeneity comes from observable differences,

while Bontemps, Robin, and van den Berg (1999) assumes that worker heterogeneity arise from

differences in worker’s opportunity costs of employment. Both studies find that search frictions

play an important role. Specifically, Van den Berg and Ridder (1998) finds that search frictions

explain around 20 percent of the variance of wage offers. Postel-Vinay and Robin (2002) were

the first to estimate a sequential-auction model with unobserved worker and firm heterogeneity.

They estimate that search frictions explain around 40-60 percent of cross-sectional wage variation.

More recently, Taber and Vejlin (2020) extended the model of Postel-Vinay and Robin (2002) to

include human capital, compensating differentials, and multidimensional pre-market skills. They

find that search frictions play a minor role in explaining cross-sectional wage variation. Tjaden

and Wellschmied (2014) includes involuntary reallocation shocks in a search model and estimates

that around 15 percent of cross-sectional wage dispersion is due to search frictions.

There has also emerged a literature structurally estimating the role of frictions on wage growth.

This literature goes back to Topel and Ward (1992). More recently, Bagger, Fontaine, Postel-Vinay,

and Robin (2014) extended the model of Cahuc, Postel-Vinay, and Robin (2006) to encompass

human capital and decomposed wage growth over the life-cycle into search induced growth and

human capital wage growth. They find that the wage-experience profile is explained by both search

frictions and human capital, but with search frictions typically playing the main role. However,

they estimate their model on Danish data and not US data as we do. Yamaguchi (2010) also

estimate a model with both human capital and search frictions, but on US data. He finds that

search frictions contribute to wage growth significantly in the first 5 years, but that human capital

is the main driver of wage growth after that. This is very similar to our findings.13

The paper is divided into three parts. In Section 2, we show how our two wage statistics

are informative of fundamental parameters in a large class of search models. In Section 3, we

estimate these statistics using US data. In Section 4, we estimate two models using our statistics.

In Section 5, we conclude the paper.

12There is also a literature using structural search models to understand the earnings consequences of job loss, see e.g.
Jarosch (2021), Krolikowski (2017), Jung and Kuhn (2018). These papers typically look at all unemployment spells and
often focus on high-tenure workers thus generating larger earnings losses than what we find.

13Other papers in this literature include Burdett, Carrillo-Tudela, and Coles (2011), Bowlus and Liu (2013), and
Menzio, Telyukova, and Visschers (2016).
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2 Statistics for Frictional Wage Dispersion and Fric-

tional Wage Growth

In this section, we show how our statistics relate to frictional wage dispersion and frictional wage

growth in search models. Before discussing each statistic, we describe the basic environment and

the main identifying assumptions used for both statistics.

2.1 Economic Environment

Consider an economy populated with heterogeneous workers, where worker heterogeneity is de-

scribed by discrete types, x ∈ X . A worker’s type may evolve over time (e.g. due to human capital

accumulation). Let the worker type of worker i at calendar time t be denoted by xit. The state of

the economy might change over time due to, for example, economic conditions (e.g. business cycle

dynamics). Let st denote the state of the economy at time t. st could be specific to the local labor

market where the worker lives. Unemployed workers of type x draw job offers from a well-behaved

job offer distribution function Fxs(w). The cumulative distribution function, Fxs(w), describes

wage offers that are above a worker’s reservation wage. Let a different well-behaved distribution

function, Gxs(w), describe the wages of employed workers of type x when the economy is in state

s in the cross-section.

Frictional wage dispersion and frictional wage growth are identified using the wages of displaced

workers who experience an employment-unemployment-employment (JUJ) transition. Consider

workers of type x who are displaced from their job when the state of the economy is st. Let wpre

denote a worker’s pre-displacement wage and wpost denote the post-displacement wage. Three main

assumptions are needed for identification.14

A1.1 : Independence of post-displacement wages:
(
wpost ⊥⊥ wpre

)
|x, s

The first assumption is that, conditional on worker type x and the state of the economy s,

the post-displacement wage is independent of the pre-displacement wage for each worker. In other

words, Assumption A1.1 states that the offer distribution is independent of the pre-displacement

wage conditional on the worker type (Fxs(w|wpre) = Fxs(w)). While the independence assumption

holds in most search models, it may be violated if the reservation wage depends on a worker’s wage

history.15 Various economic mechanisms (e.g. savings, habit formation, expectation of recall, etc)

may induce workers with higher pre-displacement wages to have higher reservation wages and to

search longer on average. We investigate this empirically in Section 3.2 and do not find evidence

of a relationship between the pre-displacement wage and unemployment duration.

A1.2 : Exogeneity of displacement: Pr(displacement|wpre, x, s) = Pr(displacement|x, s)
14Inference on job-to-job mobility requires additional assumptions as explained in Section 2.3.
15Assumption A1.1 would also be violated if workers could recall previous job offers as in Carrillo-Tudela and Smith

(2017).
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The second assumption is that displacement by plant closure (or mass layoff) is independent

of the wage conditional on the worker type and the state of the economy. While considering plant

closures as exogenous layoffs is common in the empirical displacement literature, assuming that

these displacements are unrelated to pre-displacement wages is less common. Assumption A1.2

implies that the lower wages found at closing plants is due to the worker type composition. The

intuition is that the likelihood of a plant closure will depend on the technology and composition

of the workers employed. A plant using obsolete technology is more likely to close when it receives

a negative shock (e.g. consumer preferences shift or a new competing product enters the market).

The portion of workers using obsolete or non-transferable skills will have a hard time finding a new

job after displacement and also will have had lower wages since there is little demand for those

skills. Workers with transferable skills find new jobs and have pre-displacement wages similar to

the cross-section due to competition from other firms. In Section 3.2, we perform a number of

empirical tests showing that, conditional on education, the pre-displacement wage distribution of

JUJ workers exogenously displaced (e.g. by a plant closure) and the wage distribution of employed

workers in the cross-section are statistically indistinguishable. The fraction of workers who do not

find a job within 12 months have pre-displacement wages that are lower than the cross-section.16

A1.3 : Worker types and economic conditions do not change over an unemployment

spell: xit(t = tpre) = xit(t = tpost) and st(t = tpre) = st(t = tpost)

The last assumption is that pre-displacement and post-displacement wages are measured close

enough in time that the worker type and wage distributions, which are functions of x and s, do not

change between displacement and finding a new job. Assumption A1.3 is needed as our empirical

strategy relies on making comparisons between the pre-displacement and post-displacement wages.

Our sample is restricted to workers who find a job within a year for this reason.

2.2 A Statistic for Frictional Wage Dispersion

The wage-dispersion statistic is the correlation between the pre- and post-displacement wage. The

correlation measures the persistence of wages across JUJ transitions. Intuitively, if frictional wage

dispersion is an important component of wage dispersion, then wages will not be as persistent due

to the independence assumption.

We first show that the population covariance of pre-displacement and post-displacement wages

depends only on the type- and economy-state specific means of these distributions and is inde-

pendent of other moments of the wage offer (Fxs(w)) and pre-displacement wage distributions

(Gxs(w)).

16Many models in the search literature (e.g. Burdett and Mortensen 1998; Postel-Vinay and Robin 2002) feature
relationships between firm productivity and the wage paid to workers. One way to interpret assumption A1.2 in light
of these models is that the productivity of jobs within a plant may vary. The closing of a plant may reflect on the
productivity of only a fraction of the jobs. This could be the case if different workers are in different labor markets with
different degrees of frictions.
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Let µxs = EFxs [w
post
xs ] be the conditional mean of the job offer distribution for a worker of type

x when the economy is in state s and ∆µxs = EGxs [w
pre
xs ]−µxs be the difference in the conditional

means of the Gxs(w) and the Fxs(w) distributions for a worker of type x in state s. If the post-

displacement wage wpostxs is statistically independent of the pre-displacement wage wprexs , then the

population covariance is

Cov(wpost, wpre) = V ar(µ) + Cov(µ,∆µ). (1)

The covariance depends only on the variation in the means of the type-specific distributions and is

independent of the shape of the distributions. The derivation of Equation 1 is shown in Appendix

Section A.1.

The correlation is then

Corr(wpost, wpre) =
V ar(µ)

V ar(w)
+
Cov(µ,∆µ)

V ar(w)

where V ar(w) ≡
√
V ar(wpre)V ar(wpost).17

The first term describes the variance in the means of the offer distributions across worker types

(i.e. the between-worker variance). It thus captures differences across workers due to human capital

(e.g. variation in ability and experience), labor market conditions (e.g. regional and temporal

variation), and differences in the acceptance sets of jobs (e.g. heterogeneity in networks). Some

of the persistence in wages (µxs) may be due to how worker heterogeneity interacts with search

frictions through reservations wages. Whether one chooses to think of this interaction as being part

of frictional wage dispersion or worker heterogeneity is one of definition. In our specification, type-

specific heterogeneity in reservation wages are included in µxs. We investigate the importance of

reservation wage heterogeneity in Section 3.2.18 The second term describes the covariance between

the mean of the offer distribution and the difference in the means of the pre-displacement and

offer distributions. This term will be non-zero if there is a correlation between µxs and average

frictional wage growth. For example, the covariance could be non-zero if workers search with

different intensities depending on their type as in Bagger and Lentz (2019). In Section 3.4, we find

frictional wage growth to be empirically small and hence the second term will be small relative to

the first term. One strength of this approach is that it does not require time-invariance of worker

types and wage distributions. Hence, the wage-dispersion statistic can be calculated for different

subsets of the population, at different points in the life-cycle, or different points in the business

cycle to understand how the relative importance of frictional wage dispersion varies with different

17We define V ar(w) in this way since we find empirically that V ar(wCS) ≈ V ar(wF ) ≈ V ar(wG), where V ar(wCS)
is the variance of wages in the cross-section and (wF , wG) are measured in a sample of workers who are displaced due to
a plant closure. (see Section 3.1).

18If heterogeneity in reservation wages was an important factor in our setting, then we would expect to see a significant
relationship between unemployment duration and pre-displacement wage, which we do not (see Table 2).
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economic scenarios.

2.3 A Statistic for Frictional Wage Growth

Frictional wage growth in search models occurs through workers searching on the job. Once workers

accept their first job out of unemployment, they continue to search for better jobs while they are

employed. The process of finding better jobs is often called climbing the job ladder. We say that

a worker exhibits frictional wage growth if their wage grows due to on-the-job search. In this

section, we show how the wage-growth statistic—the fraction of displaced workers earning lower

wages after unemployment—is informative of both frictional wage growth and job-to-job mobility,

independent of the job offer distribution.

Measuring frictional wage growth involves estimating a measure of distance between the cross-

section wage distribution (Gxs(w)) and the offer distribution (Fxs(w)). Given our main set of

assumptions, the pre-displacement wage is drawn from Gxs(w) and the post-displacement wage is

drawn from Fxs(w). The average wage loss (E[wpre − wpost]) has been used in the literature to

describe the distance between Gxs(w) and Fxs(w).19 One of our contributions to this literature is

to describe a sample construction and tests where this calculation can be directly interpreted as

the average frictional wage growth in the economy. We also propose a new statistic, the fraction of

displaced workers earning a lower wage. The fraction earning lower wages describes more directly

how far workers in the cross-section have climbed up the ladder in a way that depends less on

the details of the offer distribution than the average wage loss. For example, E[wpre − wpost] can

not identify dispersion in Fxs(w) from how many offers a worker has received. In other words, the

same E[wpre − wpost] can describe an economy with a disperse job offer distribution and few job

offers received, or a narrow job offer distribution and many job offers received. As we will show

next, the fraction of workers earning lower wages depends (given some more assumptions) only on

the number of offers a worker receives and is independent of the shape of the offer distribution.

We estimate job-to-job mobility in two ways. First, making minimal assumptions about the

offer arrival technology, we can use the wage-growth statistic to place bounds (i.e. derive an interval

estimator) on the number of job offers a worker received during their last employment spell. This

allows us to place a lower bound on the fraction of workers that experienced no frictional wage

growth during their last employment spell. While characterizing the number of job offers a worker

receives during an employment spell is not a common measure in the literature, it is more general

as it makes no assumptions on the type (e.g. Poisson), heterogeneity (e.g. some firms may have

higher separation rates), and time-dependence of the job offer arrival technology. Second, we also

connect our wage-growth statistic to a traditional measure of job-to-job mobility commonly used

in the literature. Assuming that workers receive job offers and separation shocks via Poisson arrival

rates, we derive an analytical expression for the wage-growth statistic as a univariate monotone

function of κ, which is the ratio of the job offer rate to the separation rate.

19See, e.g., Krolikowski (2017).
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Using the wage-growth statistic to make inference on job-to-job mobility requires three addi-

tional assumptions.

A2.1 : Workers receive job offers distributed according to Fxs(w), independent of the worker’s

employment state.

There is some empirical evidence that employed workers receive better job offers compared to

unemployed workers (see, e.g., Faberman et al, 2017). We show later in this section that if the wage

offer distribution for employed workers stochastically dominates the distribution for unemployed

workers, the number of job offers and the job offer arrival rate implied by our statistic can be

considered upper-bounds.

A2.2 : Wages are an order statistic of the value of the job.

In other words, workers accept any job that offers a higher wage than their current wage.20 One

popular type of model where this can be violated is the sequential-auction model of Postel-Vinay

and Robin (2002) and Cahuc, Postel-Vinay, and Robin (2006). In Section 2.4, we show that the

wage-growth statistic provides an upper bound for κ (the ratio of the job offer rate to the separation

rate) in a sequential-auction model when the bargaining power of the worker is not too low.

A2.3 : Jobs are rank-preserving: If worker i at time t prefers job j to j′ (j �i,t j′), then j �i,t′ j′ ∀t′.

While our analysis does not require worker types, wages, and wage distributions to be time-

invariant, we assume that the ranking of jobs is time-invariant over an employment spell.21 While

this might seem restrictive, this is not uncommon in the literature. Moscarini and Postel-Vinay

(2013) find sufficient conditions for the existence and uniqueness of rank-preserving equilibrium in

a dynamic stochastic setting. Hagedorn and Manovskii (2013) show that wages that satisfy this

assumption are sufficient to explain the empirical evidence on the history-dependence of wages.22

Finally, the assumption is also consistent with how human capital accumulation (i.e. evolution of

20Non-pecuniary benefits of a job (i.e. compensating differentials) also violates this assumption. In Section 4, we
show how our statistic can be used to estimate a model with compensating differentials and how it is, in practice, still
informative about frictional wage growth.

21A job may ”change” within a firm-worker match if, for example, a worker receives a competing offer or the match
productivity changes.

22In particular, it is well-established that the effect of the unemployment rate at the beginning of a job spell and
the minimum unemployment rate during an job spell has predictive power in a wage regression. This has been taken as
evidence of history-dependence of wages. However, Hagedorn and Manovskii (2013) show that this simply masks selection
of match productivities when viewed through the lens of an on-the-job search model without having to rely on sticky
wages. They assume wages follow

logwit = α log θt + β log εit,

where θt is a time-varying aggregate business cycle indicator and the idiosyncratic productivity, εit, is determined by the
search process where job offers are drawn from a time-invariant distribution ε ∼ F (ε). Once frictions are controlled for
by including the average labor market tightness in the employment spell and the job spell, the two unemployment rates
have no predictive power.
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x) is modelled in the wage growth literature.23 At the end of this section, we extend the analysis

to consider models where jobs receive match-specific productivity shocks.

Consider workers of type x who drew n independent job offers during their last employment

spell and lost their job at time t. The probability Prxs(n) can vary over time due to, e.g., business

cycle effects on the probability of receiving a job offer during the last employment spell. Since

jobs are rank-preserving, the distribution of pre-displacement wages is just the maximum of n

draws from the offer distribution at any time. In other words, the distribution Gxs is the nth order

statistic of Fxs,
24

Gxs(w|n) = Fxs(w)n.

The fraction of workers of type x suffering a wage loss after displacement at time t is then

Prxs(w
post < wpre|n) =

∫
Fxs(w)dGxs(w|n)

=

∫
Fxs(w)

[
nFxs(w)n−1dFxs(w))

]
= n

∫
Fxs(w)ndFxs(w)

= n

∫ 1

0
zndz

=
n

n+ 1
. (2)

Note that n includes the first job offer that began the previous employment spell. If a worker does

not receive any additional job offers during the previous employment spell, then the probability

that they will draw a lower wage after displacement is 1/2. Importantly, notice that the fraction

of workers earning lower wages after displacement depends only on the number of job offers they

receive (n) and is independent of the wage offer distribution, Fxs(w). This is because the probability

Prxs(w
post < wpre) depends only on the order statistic of wpre and not the actual value of the

wage. In other words, conditional on n, the probability of wage loss is independent of worker type

and how wage distributions evolve over time: Prxs(w
post < wpre|n) = Pr(wpost < wpre|n).

So far the only assumption made regarding the job arrival technology is that job offers are

drawn from Fxs(w). Without making further assumptions on the offer arrival technology, we can

use the observed fraction of displaced workers earning lower wages to place bounds on the fraction

of workers who received n offers during their last employment spell. The fraction of displaced

23See, e.g., Bagger, Fontaine, Postel-Vinay, and Robin (2014), Yamaguchi (2010), Burdett, Carrillo-Tudela, and Coles
(2011), and Bowlus and Liu (2013).

24This is where the rank-preserving jobs assumption is needed.
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workers earning lower wages can be written as a weighted sum

Prxs(w
post < wpre) =

∞∑
n=1

Pr(wpost < wpre|n)Prxs(n),

=

∞∑
n=1

n

n+ 1
Prxs(n), (3)

where Prxs(n) represents the probability that a worker of type x received n offers during an

employment spell and must satisfy both Prxs(n) ≥ 0 and
∑∞

n=1 Prxs(n) = 1. Prxs(n) will depend

on the details of how workers receive job offers and is determined by the offer arrival technology,

which we have made minimal restrictions on so far. While we cannot derive a point estimator of

Prxs(n) without further assumptions, we can use Equation 3 to place bounds on Prxs(n). For

example, if the estimated wage-growth statistic is less than 2/3,25 the proportion of workers of

type x who received n offers during their last employment spell is

Prxs(n) ∈


[
4− 6P̂ rxs, 2− 2P̂ rxs

]
for n = 1, P̂ rxs ≤ 2/3[

0, n+1
n−1(2P̂ rxs − 1)

]
for n > 1, P̂ rxs ≤ 2/3,

(4)

where P̂ rxs ≡ P̂ rxs(w
post < wpre) is the estimated wage-growth statistic when the economy is

at state st for worker type x.26 These bounds can be used to place empirical limits for different

types of models. For example, 4− 6P̂ rxs describes a lower bound for the fraction of workers who

experience no frictional wage growth in the previous employment spell. These bounds can easily be

extended to a labor market with involuntary job offers or match-specific productivity shocks, where

Prxs(n) is then the number of job offers since the most recent unemployment spell or involuntary

job offer or match-specific productivity shock.27 One of the benefits of focusing on the number of

job offers (Prxs(n)) is that we do not need to take a stand about the offer arrival technology and

how the arrival technology varies over time.

While inference on the number of job offers received (Prxs(n)) is relatively general, it is the

first time, to our knowledge, that it has been used to describe job-to-job mobility. In order to be

able to compare our results to measurements in the literature, we relate the frictional wage-growth

statistic to κ ≡ λe/δ, which is the ratio between the job offer arrival rate and the job destruction

rate. To do this, we need to make an assumption on the job offer arrival technology. Following

the literature, we assume that workers receive job offers while employed at a constant Poisson

25Different bounds can be calculated if P̂ rxs(w
post < wpre) > 2/3, but we do not find evidence for that empirically.

26The bounds are calculated by setting the remaining probability to load entirely on extreme values of n. For example,
the lower bound for Pr(1) occurs when Pr(2) = 1−Pr(1) and Pr(m) = 0 ∀m > 2. The lower bound can then be found
by solving for Pr(1) using Equation 3: P̂ r = 1

2Pr(1) + 2
3 [1− Pr(1)]. Likewise, the upper bound can be found by solving

P̂ r = 1
2Pr(1) + 1 [1− Pr(1)].

27This assumes that match-specific productivity shocks are drawn from Fxs(w).
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rate of λe and lose their jobs at a constant Poisson rate δ.28 These two parameters determine the

probability distribution of the number of job offers a worker receives during an employment spell.

Specifically, the probability of receiving n− 1 additional job offers before a separation shock is29

Pr(n) =

(
λe

λe + δ

)n−1 δ

λe + δ
(5)

=

(
κ

κ+ 1

)n−1 1

κ+ 1
.

Differences in the number of job offers a worker receives will depend on their type x. It is

important to note here, that the goal of this analysis is not to estimate κx per se, but to relate our

statistic to a measure of frictional wage growth commonly used in the literature. In other words,

viewed through the lens of a search model with constant Poisson arrival rates, what is the inferred

κx from the wage-growth statistic? The relationship between the wage-growth statistic and κx is

Prx(wpost < wpre) =
1

κx + 1

∞∑
n=1

n

n+ 1

(
κx

κx + 1

)n−1

= 1− (κx + 1) ln(κx + 1)− κx
κ2
x

. (6)

The derivation of Equation 6 is found in Appendix Section A.2.30

The one-to-one relationship between the wage-growth statistic and κx is depicted in Figure 1.

As κx → ∞ (e.g. λex → ∞), Prx(wpost < wpre) → 1. As the rate of on-the-job offers increases

relative to the job destruction rate, workers, on average, climb further up the job ladder before

suffering displacement. The probability that they then earn a lower wage in their first draw from

Fxs(w) becomes very high. Likewise as κx → 0 (e.g. λex → 0), Prx(wpost < wpre) → 1/2. In other

words, as workers become more likely to get a job destruction shock relative to a job offer in their

first job, the probability goes to 1/2.

Notice, that any population measure of the probability, Pr(wpost < wpre), is going to be a

weighted sum over the type probabilities,
∑

x πxPrx(wpost < wpre), where πx is the fraction of

workers of type x.

28The search literature on frictional wage growth typically assumes time-invariant Poisson arrival rates.
29From the mathematics literature on Poisson processes (e.g. Gallager 2013), the probability that the k th arrival of

process 1 occurs before the j th arrival of process 2 is

Pr(S1
k < S2

j ) =

k+j−1∑
i=k

(
k + j − 1

i

)(
λ1

λ1 + λ2

)i(
λ2

λ1 + λ2

)k+j−1−i

.

Note that this assumes that (employment) spells are not censored. For example, if κ is estimated using the wage-growth
statistic for young workers with less than five years of labor market experience, employment spells longer than five years
would be censored and estimates of κ using Equation 6 could be biased downwards.

30We show that the result can also be derived using Burdett and Mortensen (1998) steady-state accounting arguments
in online Appendix Section C.
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Different Offer Distribution If the wage offer distribution of employed workers stochastically

dominates the distribution of unemployed workers (F exs(w) ≤ F uxs(w) ∀w), then the mobility param-

eters implied by the wage-growth statistic derivations can be considered upper bounds for the true

mobility parameters. In this case, the distribution Gxs(w|n) = F uxs(w)F exs(w)n−1. The derivation

of Equation 2 is similar: Prxs(w
post < wpre|n) =

∫
F uxs(w)dGxs(w|n) = 1 −

∫
Gxs(w|n)dF uxs(w) =

1 −
∫
F uxs(w)F exs(w)n−1dF uxs(w) ≥ 1 −

∫
F uxs(w)ndF uxs(w) = n

n+1 . Giving us n
n+1 ≤ Prxs(w

post <

wpre|n).

Involuntary Job Offers and Match-Specific Productivity Shocks Our result can be

extended to cases where workers receive involuntary job offers or where jobs receive match-specific

productivity shocks. An involuntary job offer is a job offer that employed workers must accept or

go into unemployment. These have in recent years become common in empirical search models, see

e.g. Bagger and Lentz (2019) or Taber and Vejlin (2020). ”Involuntary job offers” can represent

many different situations, but one common interpretation is that it is a situation where a worker

receives an advanced layoff notice and found a job prior to getting fired. Analogously, consider a

model with match-specific productivity inspired by Mortensen and Pissarides (1994), but where

we modify the model with two realistic features. First, the initial match-productivity is drawn

from the offer distribution and there is on-the-job search. Let λdx represent the total Poisson rate

of involuntary job offers and match-specific productivity shocks. The derivation is the same as

before, except that we need to calculate the probability of receiving n − 1 additional job offers

before receiving a job separation, an involuntary job offer, or match-specific productivity shock,

Prx(n) =

(
λex

λex + δx + λdx

)n−1 δx + λdx
λex + δx + λdx

.

The relationship between the wage-growth statistic and the Poisson parameters in a model

with involuntary job offers is

Prx(wpost < wpre) = 1− (1 + κ̃x) ln(1 + κ̃x)− κ̃x
κ̃2
x

,

where κ̃x = λex
δx+λdx

. In terms of the job ladder, an involuntary job offer or match-specific productivity

shock functions in a similar way to a job destruction shock, in that workers lose their search capital.
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Figure 1: Relationship between fraction of workers earning lower wages after displacement and κ

.0
1

.0
3

.1
.3

1
3

10
κ 

= 
λ 

/ δ

.5 .55 .6 .65 .7 .75 .8 .85
Fraction of Displaced Workers Experiencing Wage Losses

2.4 Extension to Sequential-Auction Models

Sequential-auction models are a class of search models that add between-employer competition to

the canonical wage-ladder model.31 Unemployed workers meet with an employer and bargain over

the wage, where unemployment is the worker’s outside option. When employed workers consider a

new job offer, their outside option is their current employer. The wage then depends not only on

the highest offer received, but also on the second highest offer. Workers draw job offers from an

offer distribution Fx(p), where p is the flow productivity. Thus, the highest wage an employer can

pay to a worker of type x and still earn non-negative profits is px. Note that px is capturing the

employer heterogeneity for workers of type x. The wage in these models is described by

wx(p1, p2) = p1 − (1− βx)

∫ p1

p2

ρx + λxF̄x(z)

ρx + λxβxF̄x(z)
dz, (7)

where βx is the bargaining power of the worker, F̄x(z) = (1 − Fx(z)) where Fx(z) is the job offer

distribution. The discount factor ρx includes the worker’s time discounting and Poisson rates for

mechanisms that result in a worker leaving the job involuntarily (separation rates, involuntary job

offers, etc). The wage depends on both the highest offer (p1) and the second highest offer (p2)

received during the last employment spell. The sequential-auction model nests the wage-ladder

model from the previous section when βx = 1, where wages are simply equal to p1.

There are two elements of the sequential-auction model that complicates the calculation of the

wage-growth statistic and κx: rent-sharing and expectations of future wage growth. To see this,

31See Postel-Vinay and Robin (2002) and Cahuc, Postel-Vinay, and Robin (2006) for seminal contributions.
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we re-write Equation 7 in terms of a static component and an option value component

wx(p1, p2) = βxp1 + (1− βx)p2︸ ︷︷ ︸
Static Component

− (1− βx)2

∫ p1

p2

λxF̄x(z)

ρx + λxβxF̄x(z)
dz︸ ︷︷ ︸

Option Value Component

. (8)

The static component reflects the bargaining between the worker and the firm over the surplus

of the match (rent-sharing) ignoring the value of future wage growth (i.e. option value). The

option value component reflects the wage the worker is willing to give up because of the expected

future wage growth. Unfortunately, it is not possible in this case to express Prx(wpost < wpre)

independently of the offer distribution, as we do in Equation 2. This is both due to the weighted

average between the highest and second highest offer in the static component and the additional

integral in the option value component.

The goal of this sub-section is to find sufficient conditions such that, given the same environ-

ment, the sequential-auction model will generate a weakly higher probability of wage loss than the

wage-ladder model. We can then interpret our inferred number of job offers or κx from the wage-

ladder model as upper bounds for the sequential-auction model when βx < 1. Since our estimates

of the implied κ are low, an upper bound does not affect the interpretation of our estimates.

Let ppre1 and ppre2 represent the highest and second highest offers (in terms of px) from the

pre-displacement employment spell. Let ppost1 represent the first offer out of unemployment. When

βx = 1, ppre1 > ppost1 will result in a wage loss and ppre1 < ppost1 will result in a wage gain. Our

approach is to derive conditions on βx such that ppre1 > ppost1 will always result in wpre > wpost in

the sequential-auction model. These are sufficient conditions as we will be comparing workers with

the same history of job offers and asking if a wage loss in the wage-ladder model (βx = 1) will

result in a wage loss in the sequential-auction model (βx < 1). Necessary conditions would only

require more wage losses on average, rather than point-wise for each possible offer history.

It is easy to see from Equation 8, that if the option value component of wages is small (e.g.

λx � ρx), then w(ppre1 , ppre2 ) > w(ppost1 , bx) if ppre1 > ppost1 and ppre2 ≥ bx with bx being the flow

value of unemployment. More generally, we can derive a sufficient condition on the bargaining power

(βx), such that the sequential-auction model will result in weakly more wage losses compared to

the wage-ladder model (βx = 1) even when the option value is important.

Proposition 2.1. Consider a job offer history for a worker of type x, where the highest pre-

displacement offer is ppre1 , the second-highest pre-displacement offer is at least as large as the flow

value of unemployment ppre1 ≥ ppre2 ≥ bx, and the post-displacement offer is ppost1 . If ppost1 < ppre1

and βx >
λx

2λx+ρx
, then w(ppost1 , bx) < w(ppre1 , ppre2 ).32

We have shown that when βx >
λx

2λx+ρx
, the sequential-auction model predicts wages losses

whenever there are wage losses for βx = 1, independent of the offer distribution. In this case, we

can consider the implied κx from the βx = 1 model as an upper bound for the implied κx in

32The proof is in Appendix Section A.3.
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sequential-auction models with λx
2λx+ρx

< βx < 1. In Section 4, we estimate a basic wage-ladder

model. If we calculate the sufficient condition on βx for the estimated model we get 0.307.33 In the

literature βx is often found to be in the range of 0.2-0.4.34 Note that the lower bound on βx is a

loose lower bound and we conjecture that the implied κx from the wage-ladder model is an upper

bound for the sequential-auction model in most cases. This is supported by a numerical example in

Appendix Section F.4, where we show that the implied κ from the wage-ladder model is an upper

bound for any value of β in our estimated model and not just values that satisfy Proposition 2.1.35

3 Quantitative Implications for Frictional Wage Growth

and Wage Dispersion

In this section, we present estimates of the two statistics discussed. We start by describing the

two datasets in Section 3.1. In Section 3.2, we check the robustness of the identifying assumptions

empirically. Section 3.3 discusses the effect of measurement error and derives simple corrections for

both statistics. Section 3.4 presents and discusses the estimated statistics and their implications.

3.1 Data

We estimate the frictional wage dispersion and frictional wage-growth statistics using two US

surveys: the Displaced Worker Supplement to the Current Population Survey (CPS-DWS) and

the Survey of Income and Program Participation (SIPP). We repeat the analysis in two different

datasets for a number of reasons. First, each dataset has its strengths and weaknesses. The SIPP

records wages each month, but does not ask about plant closures. The CPS-DWS identifies plant

closures (our preferred characterization of exogenously displaced workers), but measures post-

displacement wages up to three years after starting the post-displacement job. A large delay in the

measurement of wages is clearly not ideal, since we want to measure the wage immediately after

finding the first job. Second, using both surveys we are able to show that our estimates are robust

to survey design, time period covered, definition of displaced workers, and when and how wages

are measured. The goal is to define displacements as involuntary exogenous separations based on

the operating decisions of the employer, such as firm/plant closings and permanent layoffs. Other

33βx >
0.173

2×0.173+0.05+0.116+0.052
34Bagger, Fontaine, Postel-Vinay, and Robin (2014) find βx to be around 0.3 across all educational groups, while

Cahuc, Postel-Vinay, and Robin (2006) find that bargaining power is increasing in the observable ability of the worker
with some differences across sectors. The bargaining power of managers is on average around 0.45, while it is on average
0.05 for low skilled workers. Bagger and Lentz (2019) finds β to be 0.231.

35The necessary conditions likely require some restrictions on the offer distribution as we have found that it is possible
to construct an offer distribution where the wage-ladder model has more wage losses than a model with β = 0. One
such distribution has two mass points, one at p = b and another at p > b. This counter-example is an economy where
a significant fraction of workers are paid wages at or below the flow value of unemployment, which seems to be at odds
with empirical observations.
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types of separations—e.g. due to quits or being fired with cause—are not included, since these may

be endogenous, e.g. to individual wages. The empirical analysis studies prime-aged (25-54 years

old), full-time (at least 35 hours/week), private sector workers who are not working in agriculture

or construction. All earnings are in 2010 US dollars (deflated by the CPI).

Description of SIPP The Survey of Income and Program Participation (SIPP) is a continuous

series of short panels.36 Our analysis includes the 1996, 2001, 2004, and 2008 panels.37 The duration

of each panel ranges from three to four years. Each individual is surveyed once every four months

and is asked about their employment in each month during the previous four months. In particular,

if they leave a job they are asked for the reason. In the SIPP, we characterize a displaced worker as

a worker who left an employer (and did not return) for one of three reasons: ”Layoff,” ”Employer

bankrupt,” and ”Slack work or business conditions.” Unfortunately, workers are not asked about

plant closings and separations due to a bankrupt employer are a rare occurrence.

We construct the sample of displaced workers in SIPP via the following steps. The main dis-

placed worker sample consists of prime-aged, full-time, private-sector workers who were displaced

at least one year before the last wave of the panel. This is the job-unemployment or ”JU” sample. In

order to avoid using the earnings for a month in which the worker was not fully employed, we use the

last reported monthly wage earnings in the wave previous to displacement as the pre-displacement

wage.38 The job-unemployment-job or ”JUJ” sample additionally selects displaced workers who

find a full-time, private-sector job within a year of displacement. We choose one year because

we want avoid considerations about human capital changing during the unemployment spell. The

post-displacement wage is the first reported monthly wage earnings of the post-displacement job

in the wave after displacement. In addition, we construct a cross-section of prime-aged, full-time,

private-sector workers that can be compared to the pre-displacement workers in order to inves-

tigate the representativeness of displaced workers. This is the cross-section or ”CS” sample. For

each individual in the ”CS” sample, we flag months when they were prime-aged and employed in

a full-time private-sector job. Then for each individual, we randomly select a flagged month and

record the monthly earnings. We only include observations at least one year before the last wave

of the panel to match the selection of the displacement sample. Descriptive statistics of the SIPP

sample are reported in Appendix Table 1.

36We use the Center for Economic and Policy Research SIPP Uniform Extracts: Center for Economic and Policy
Research. 2014. SIPP Uniform Extracts, Version 2.1.7 . Washington, DC.

37Earlier panels did not ask detailed questions about separations, so we can not identify displaced workers in those
datasets.

38For workers who are paid an hourly wage, the monthly wage earnings are calculated by multiplying the hourly wage
times the hours the worker reported. We do not use income that has been imputed. We winsorize monthly income between
$640 and $14,500 in 2010 US dollars (deflated by the CPI). The upper limit drops top-coded earnings as recommended
by the Center for Economic and Policy Research. Our results are robust to using the panel-specific top-codes ($12,500 in
nominal dollars for 1996 and 2001; and $16,666 in nominal dollars for 2004 and 2008). The wage-growth statistic estimates
are also robust to including individuals who are top-coded in one, but not both wage measurements (the case when wage
comparisons can still be made).
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Description of CPS-DWS The Displaced Workers Survey (CPS-DWS) is a biennial supple-

ment to the CPS taken during the January or February data collection.39 Our CPS-DWS sample

includes all surveys taken between 1984 and 2016. The CPS-DWS asks respondents if they had

experienced a displacement in the last 3 years and what year they lost their job.40 The data

have information on worker demographics; occupation, industry, and weekly earnings at the pre-

displacement job; weeks without work after displacement; and occupation, industry, and weekly

earnings at the current job.41We also use data from the outgoing rotation group (CPS-ORG)

supplement from January two years before each CPS-DWS survey in order to make comparisons

between the displaced worker’s pre-displacement job and the jobs of workers from the cross-section.

The Outgoing Rotation Group (CPS-ORG)—also called the earner study—asks about usual weekly

hours and earnings in one fourth of the households surveyed each month.42

We restrict the CPS-DWS sample to workers who where displaced from a full-time private-

sector job by a plant closing. We keep the workers who report being displaced ”two years” before

the survey to minimize both selection bias and post-displacement wage growth bias.43 This is the

”JU” sample for the CPS-DWS. We then require that they are reemployed at the survey date

at a different full-time private-sector job (i.e. they were not recalled). This is the ”JUJ” sample

for the CPS-DWS. We restrict our analysis to full-time jobs because the CPS-DWS only provides

“usual” weekly earnings and the full/part time status of the worker’s old job before 1994, hence it

is difficult to control for hours of work beyond requiring full-time status in a consistent way across

the years. Finally, we use the CPS-ORG sample to construct a ”CS” sample that can be compared

to the CPS-DWS’s ”JU” sample. To each CPS-DWS survey, we append the CPS-ORG sample

39The CPS-DWS was given in February between 1994 and 2000 and was given in January all other years.
40For example, the 2016 supplement asked, “During the last 3 calendar years, that is, January 2013 through December

2015, did (name/you) lose a job, or leave one because: (your/his/her) plant or company closed or moved, (your/his/her)
position or shift was abolished, insufficient work or another similar reason?” Before 1994, the CPS-DWS asked about
layoffs in the last 5 years. To keep the sample consistent, we drop observations reporting layoffs more than 3 years in the
past. If the worker experienced more than one layoff in the past three years, they ask about the job they held the longest.

41For workers who are paid an hourly wage, the weekly wage earnings are calculated by multiplying the hourly wage
times the hours the worker reported. We winsorize weekly income between $160 and $2,600 in 2010 US dollars (deflated by
the CPI). The upper limit drops top-coded earnings in a similar way to the SIPP sample selection. Our results are robust
to using the wave-specific top-codes ($1,923 in nominal dollars before 1997; and $2884.61 in nominal dollars afterwards).
The wage-growth statistic estimates are also robust to including individuals who are top-coded in one, but not both wage
measurements (the case when wage comparisons can be made). We also note that about 9 percent of displaced workers
report the same pre- and post-displacement wages. Dropping these workers would lower both the wage-dispersion statistic
(they increase the correlation) and the wage-growth statistic (they are classified as wage losses in real terms).

42Households in the CPS are surveyed for four successive months, not surveyed for eight months, and then surveyed for
four successive months. The CPS-ORG survey occurs in the fourth and eighth interview (fourth and sixteenth month).

43Workers are asked if they last worked at the lost job either ”last year,” ”two years ago,” or ”three years ago.” We
found that workers who reported ”last year” and had a job at the time of the interview are strongly selected compared
to workers who report losing their job ”two” or ”three” years ago. The ”last year” workers had shorter nonemployment
durations and higher wages in the post-displacement job. We do not include the workers who report being displaced
three years ago as they have been working at least a year longer and have higher post-displacement wages due to post-
displacement wage growth.

20



from exactly two years earlier. The CPS CS sample includes data from 1996-2014.44 Descriptive

statistics of the sample are reported in Appendix Table 2.

3.2 Robustness of Identifying Assumptions

Representativeness of Displaced Workers One important threat to our identification

strategy is that workers with certain wages may be more likely to be displaced. For example, workers

at a low-paying plant may have a higher risk of displacement. Another example is that low quality

worker-firm matches may be more sensitive to productivity shocks that lead to separations. These

mechanisms will bias the wage-growth statistic downwards and also make the wage-dispersion

statistic difficult to interpret. It is well-known in the displacement literature that wages at closing

plants are low.

Table 1 shows a series of regressions comparing the pre-displacement wages of displaced workers

to the wages of CS workers in both the CPS and the SIPP. In both the SIPP and CPS, the pre-

displacement wages of displaced workers are significantly below the wages of the cross section of

workers (column 1). Specifically, we find that pre-displacement wages are seven to eight log points

less than the average worker in the US economy.

While our results on pre-displacement wages are consistent with the displacement literature,

we find that the differences in wages vary quite a bit if we separate the workers who find a job

within a year and those that do not.45 In columns 2-4 in Table 1, we separate displaced workers

who do not find a full-time, private-sector job within a year (JU) and those that did (JUJ). In the

SIPP in panel A, the JUJ workers are much less selected compared to the CS workers (column

2) and the difference it not statistically significant. Once we control for four education indicators

(column 3), the JUJ-CS difference becomes even smaller. The similarity between JUJ and the

CS samples is robust to adding a rich set of controls (column 4), (e.g. demographics, occupation,

tenure, experience, year hired, etc). While it is possible that these workers are positively selected

in some unobserved characteristic, this characteristic would have to be orthogonal to the set of

rich observables that we consider.We find similar results in the CPS. Thus, the wage differences of

displaced workers are being driven by workers who do not find full-time private-sector jobs within

a year after displacement and are not in the sample we use to calculate the statistics. Table 3

in the Appendix repeats specification (4) for sex, education, experience, tenure, and occupation

44The goal of constructing the CS sample is to be able to compare, along multiple dimensions, the displaced workers
to workers in the cross section. One important dimension is job tenure. We do not include earlier years in the CS Sample
as the Job Tenure Supplement was not given before 1996.

45The requirement that workers find a job within one year does not appear to be important. The SIPP panels are too
short to follow workers for much more than a year after displacement. We can compare workers in the CPS-DWS who
were displaced ”two years ago” vs. ”three years ago.” Surprisingly we find that both the fraction of workers who find
a job and the pre-displacement wage is almost identical in the two samples. For example, 52 percent of the ”two years
ago” sample and 54 percent of the ”three years ago” had a full-time private-sector job at the time of the interview, even
though the ”three years ago” workers had an additional year to find a job. Only 42 percent of ”last year” workers had a
job at the time of the interview.
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Table 1: Comparing Pre-displacement Wages of Displaced Workers to the Cross Section

Panel A: Log Wage Regressions

SIPP CPS
(1) (2) (3) (4) (1) (2) (3) (4)

Displaced -0.0832*** -0.0788***
(0.0096) (0.0125)

JUJ -0.0224 0.0007 0.0083 -0.0167 -0.00994 0.00630
(0.0140) (0.0124) (0.0105) (0.0171) (0.0152) (0.0134)

JU -0.133*** -0.0832*** -0.0626*** -0.147*** -0.0935***-0.0605***
(0.0128) (0.0113) (0.0096) (0.0179) (0.0159) (0.0141)

Year FE X X X X X X X X
Education X X X X
Demographics X X
Labor History X X

R2 0.005 0.006 0.221 0.446 0.002 0.003 0.212 0.393
N 95236 95236 95236 95236 59986 59986 59986 59986

Panel B: Kolmogorov-Smirnov Tests of Equality of JUJ and CS Wage Distributions

HS HS Some College
All Dropout Graduate College Graduate

SIPP p-val 0.021 0.086 0.030 0.459 0.076
SIPP N 92909 8990 28275 32455 23189

CPS p-val 0.145 0.383 0.151 0.294 0.634
CPS N 59087 4638 18788 17448 18213

Note: Standard errors are in parenthesis. Earnings of displaced workers are compared to a cross-section (CS) of workers.

Earnings are measured as log of weekly (CPS-DWS) or monthly (SIPP) wage earnings. Samples consist of prime aged

(25-54 years old), full-time, private-sector workers who are not working in agriculture or construction. Displaced is an

indicator for workers who were displaced from their job (SIPP: layoff, employer bankruptcy, or slack work conditions;

CPS: plant closing). JUJ is an indicator for displaced workers who found a full-time private-sector job within a year

and JU is an indicator for displaced workers who did not find a full-time private-sector job within a year. Education

includes four education indicators. Demographics includes race and sex indicators. Labor History includes indicators for

experience, tenure, occupation, and year the worker started the job. CPS Data combines pre-displacement weekly earnings

of workers from the 1998-2016 Displaced Worker Surveys (CPS-DWS) with weekly earnings of a cross-section of workers

who were in the Outgoing Rotation Groups (CPS-ORG) two years before each Displaced Worker Survey. SIPP combines

pre-displacement earnings of displaced workers with one randomly chosen wage observation for each cross-section worker

from the 1996, 2001, 2004, and 2008 panels. See Section 3.1 and Appendix Section E for more details. *** p < 0.001
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sub-samples and confirms the findings in Table 1.

We interpret these findings on pre-displacement wages as indicating that there are two broad

types of displaced workers. The first type have marketable skills and were paid similar wages

to other workers in the economy. The first type finds a new job quickly (i.e. less than a year).

The second type of displaced worker is employed using obsolete/unmarketable skills. The pre-

displacement firm can pay low wages to these workers and not worry about losing them to other

firms. Once they are displaced they have a difficult time finding a new full-time private-sector job.

Our analysis compares pre-displacement wages with post-displacement wages, and hence focuses

on the first type of worker. Finally, since our statistics are not linear in the pre-displacement wages,

we care about the full distribution and not just the mean. In panel B of Table 1, we present results

from a series of Kolmogorov-Smirnov tests of the equality of the JUJ and CS wage distributions.

We find that in the CPS data we cannot reject unconditional equality, while in the SIPP we can

at the 5 percent significance level. Once conditioning on education by testing the within education

distributions, we cannot reject equality in any of the educational samples using SIPP or CPS.46

Not only are the means the same for the JUJ and CS samples, but, conditional on education, the

distributions are also similar.

Independence of Pre- and Post-displacement Wages There are a number of economic

mechanisms that could generate a correlation between the pre-displacement wage and the worker’s

reservation wage, violating the independence assumption. A few examples are savings, loss aver-

sion, option to be recalled to previous job, and unemployment benefits. First, higher wages may

lead workers to have higher savings. Higher savings may lead to a higher reservation wage when

unemployed due to a better ability to smooth consumption. Second, workers may have loss aver-

sion, where there is a direct utility cost of accepting a lower wage relative to the wage prior to

unemployment. Third, workers may have the option to be recalled or expect the option to be

recalled to their pre-displacement job, and, hence, will have a higher reservation wage. Finally, un-

employment benefits depend on a worker’s pre-displacement wage up to a maximum benefit that

varies by state. All four of these mechanisms lead high-wage workers to have higher reservation

wages and, conditional on worker type, longer unemployment durations.

We test the prediction that higher pre-displacement wages lead to longer unemployment dura-

tions in the SIPP and the CPS-DWS. In the CPS-DWS, displaced workers are asked how many

weeks they were without work. In the SIPP, workers report the calendar month and year they start

and finish working at a job. We use the start and end dates to calculate the number of months be-

tween the end of the pre-displacement job and the start of the post-displacement job. Table 2 shows

a series of regressions of the unemployment duration measured in days on the pre-displacement

log wage including different sets of controls.47 The top panel shows the results for the SIPP JUJ

sample and the bottom panel shows the results for the CPS-DWS JUJ sample. In all cases, we do

46The HS Graduate comparison in the SIPP sample is weakly statistically significant with a p-value of 0.03.
47We have also done the regressions using the log to unemployment duration. The qualitative results are very similar.

23



not find evidence of a relationship between unemployment duration and the pre-displacement log

wage. Table 4 in the Appendix repeats specification (4) for sex, education, experience, tenure, and

occupation sub-samples and confirms the findings in Table 2. We thus conclude that mechanisms

that violate the independence assumption by generating a positive correlation between pre- and

post-displacement wages through higher reservation wages are not a major concern.

Table 2: Relationship between Unemployment Duration and Pre-Displacement Wage

Unemployment Duration (days)
(1) (2) (3) (4)

SIPP Log Wage -5.040 -1.448 2.255 2.156
(3.843) (4.533) (4.727) (5.320)

R2 0.023 0.029 0.034 0.089
N 1914 1914 1914 1914

CPS-DWS Log Wage -4.566 2.068 4.074 -8.523
(5.409) (5.860) (6.124) (6.717)

R2 0.042 0.047 0.051 0.117
N 2062 2062 2062 2062

Year FE X X X X
Education X X X
Demographics X X
Labor History X

Note: Standard errors are in parenthesis. Each element in the table is a regression of the unemployment duration (measured

in days unemployed) on the pre-displacement log wage. Log wages are measured as log of weekly (CPS-DWS) or monthly

(SIPP) wage earnings. The unemployment duration in the SIPP is measured as the number of months between the pre-

displacement job and the post-displacement job. The unemployment duration in the CPS is the number of weeks without

work reported by the worker. The number of observations for the CPS-DWS sample do not match the analysis sample

as not everyone answers the unemployment duration question. Demographics controls include race and sex indicators.

Education controls include high school graduate, some college, and college graduate indicators. Labor History includes

indicators for potential experience, tenure at lost job, occupation at lost job, and the year the worker started the lost job.

3.3 Measurement Error in Wages

If wages are measured with classical measurement error, the wage-dispersion statistic will be biased

towards zero and the wage-growth statistic will be biased towards 1/2. In this section, we describe
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simple measurement-error corrections for each statistic.48

A correction for the wage-dispersion statistic can be done by dividing the correlation between

pre-displacement and post-displacement wages by the reliability (or signal-to-total-variance) ratio

of wages (λrelw ). Assume that wages have classical measurement error

w = ηw + νw,

where ηw is the true wage and νw is the measurement error in wages. Let measurement error be

independent between pre-displacement and post-displacement measurements and also independent

of true wages. The correlation between pre-displacement and post-displacement wages is then

corr(wpre, wpost) =
cov(ηprew , ηpostw )

σwpreσwpost

=λrelw corr(ηprew , ηpostw ),

where we assume that the reliability ratio (λrelw =
σ2
ηw

σ2
ηw+σ2

νw
) is the same for pre- and post-

displacement wages (λrelwpre = λrelwpost). Hence, a simple measurement-error correction is to divide

the measured wage-dispersion statistic by the reliability ratio.

The wage-growth statistic can be corrected for measurement error by doing a simple deconvo-

lution. Let the difference in pre-displacement and post-displacement wages be

∆w = η∆w + ν∆w,

where η∆w is the true difference in log-wages and ν∆w is classical measurement error. Assume that

η∆w and ν∆w are independent and normally distributed, where the measurement error has mean

zero (µν∆w = 0). Hence, ∆w is also normally distributed with mean µ∆w = µη∆w and variance

σ2
∆w = σ2

η∆w
+ σ2

ν∆w
. We can express the true fraction earning lower wages (Pr(η∆w < 0)) in terms

of the fraction measured (with classical measurement error) in the data (Pr(∆w < 0)):

Pr(η∆w < 0) = Φ

[
−µη∆w

ση∆w

]
= Φ

 −µ∆w

σ∆w

√
λrel∆w


= Φ

Φ−1 [Pr(∆w < 0)]√
λrel∆w

 , (9)

48Up until this point, we have not discussed the functional form of wages used to calculate the statistics. There is a
connection between how wages are used to calculate the statistics (i.e. levels or logs) and the form of measurement error
assumed. We estimate the statistics using log-wages and hence, we assume that the measurement error in wages follows
w = ηwνw in levels. Another researcher may prefer to assume measurement error that is additively separable in levels
and could then estimate and correct the statistics using wages in levels.
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where λrel∆w is the reliability statistic for first-differences in wages (λrel∆w =
σ2
η∆w

σ2
η∆w

+σ2
ν∆w

=
σ2
η∆w

σ2
∆w

) and

Φ is the CDF of the standard normal distribution.

Thus, we need the reliability ratio for both the level of wages and the first-difference in order

to correct the two statistics. The reliability ratio of wages is available from the literature on

measurement error in survey data and, given certain assumptions, can also be measured in our

data. For example, in the SIPP data we can compare wages across two observations of the same

worker-firm match separated by four months. We do not look at adjacent months, because the

measurement error is likely to be correlated within the same interview. If we assume that the

true wage is constant across the four months within a given job, we can use the correlation of the

within-match wages to estimate the reliability ratio in levels49

corr(wi,t, wi,t+1) =
σ2
ηw

σ2
ηw + σ2

νw

= λrelw .

Our estimate using the within-match correlation in the SIPP (λ̂relw ≈ 0.882) is quite close to Bound

and Krueger (1991) who estimate reliability statistics for men and women by comparing reported

income in the CPS to social security records (λ̂relw ≈ 0.864). Bound, Brown, and Mathiowetz

(2001) review the literature on the correlations between worker and employer earnings and find

that correlations in studies using weekly, monthly, and annual earnings are similar (see Section

6.1.2 therein). While SIPP measures monthly earnings and CPS measures weekly earnings, we will

use our SIPP estimates of λ̂relw as Bound and Krueger (1991) do not estimate reliability ratios by

education groups, which we need for our results conditional on education.

It is not as straightforward to measure the reliability ratio of the first-difference in wages

(λrel∆w) from survey data alone. Bound and Krueger (1991) estimate reliability statistics for men

and women by comparing reported income in the CPS to social security records. We calculate a

weighted average of the reliability ratios of wage differences for men and women in CPS data of

λrel∆w = 0.711.50 In other words, 71% of the variance in wage differences is signal in CPS data.

It may not be clear from Equation 9 if measurement error leads to important downward biases

for the wage-growth statistic. In Figure 2 we show how, given a measured fraction of 0.576 (our

preferred estimate), the true fraction depends on different amounts of measurement error. The

x-axis is the fraction of variance due to measurement error, (1− λrel∆w). Measurement error would

have to be unreasonably large to have a substantive effect on the wage-growth statistic. We use

49There are other reasons why wages may change such as bonuses, temporary sickness, inflation coupled with wage
rigidities, etc. Given the agreement of our reliability estimate using within-job wage changes with Bound and Krueger
(1991), who compare reported income to administrative records, we conjecture these other sources do not make an
significant contribution to our estimates of the measurement error.

50See Table 6 on page 16 in Bound and Krueger (1991), where we use the estimates for classical measurement error
for income differences and the gender composition of our baseline sample (57 percent male). While there are differences
in the measure the SIPP uses (weekly earnings) with the measure used in Bound and Krueger (1991) (annual earnings),
we prefer using their estimates as they directly estimate the measurement error in earnings changes in CPS data.
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λrel∆w = 0.711 from Bound and Krueger (1991) to do the correction and calculate the corrected

statistic to be P̂ rcorr = 0.590.

Figure 2: Correcting the Wage-Growth Statistic for Measurement Error
(

P̂r(∆w < 0) = 0.576
)

Bound and Krueger (1991)
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Notes: This figure shows how the corrected wage-growth statistic depends on different amounts of
measurement error assuming the measured statistic of P̂ r(∆w < 0) = 0.576 from SIPP (see

Section 3.4). Using λrel∆w = 0.711 (Bound and Krueger (1991)), the corrected statistic is P̂ rcorr = 0.590.

3.4 Results

In this section we present our estimates of the wage-dispersion statistic and wage-growth statistic,

with and without the measurement error-corrections presented above.

The results for the wage-dispersion statistics are presented in Table 3. We find that the corre-

lation between the pre- and post earnings are 0.72 and 0.76 in the SIPP and CPS, respectively.

Correcting for measurement error increases the correlations to 0.81 and 0.86. Recall, that one minus

the correlation is an upper bound on the relative importance of search frictions. This suggests that

search frictions play a small role in generating wage dispersion compared to worker differences.

Looking at educational sub-groups decreases the correlation some. This is only natural, since the

variance of wages is lower in the sub-samples (i.e. we now only look at within group variation). The

51About 9 percent of the CPS-DWS sample reports identical pre- and post-displacement nominal wages. If these are
not included, then the estimated uncorrected wage-dispersion statistics are 0.685, 0.606, 0.650, 0.638, for the full sample,
high school, some college, and college graduate samples, respectively.

27



Table 3: Results on Wage-Dispersion Statistic

N corr(wpre, wpost) corr(wpre,wpost)
λrelw

Displaced (SIPP) 1914 0.755 0.855
(0.012) (0.014)

High School or less 795 0.658 0.812
(0.024) (0.030)

Some College 686 0.658 0.786
(0.026) (0.031)

College Graduate 433 0.724 0.826
(0.029) (0.033)

Plant closure (CPS-DWS) 2241 0.715 0.810
(0.012) (0.014)

High School or less 813 0.632 0.780
(0.023) (0.029)

Some College 916 0.681 0.813
(0.019) (0.023)

College Graduate 512 0.673 0.768
(0.034) (0.039)

Notes: Standard errors are in parenthesis. Sample selection: prime aged (25-54 years old), full-time,
private-sector workers, not working in agriculture or construction, who made a full-time private sector
to full-time private sector transition. Displaced workers in the SIPP sample includes workers who were
displaced due to a layoff, employer bankrupcy, or slack work conditions. The CPS-DWS sample includes
workers who were displaced due to a plant closing.51 λrelw is the reliability ratio for measurement error
in wages. Education-specific reliability ratios are calculated using the SIPP cross-sectional dataset. We
estimate λrelw to be 0.883, 0.811, 0.837, and 0.877 for the full sample, high school or less, some college,
and college graduates, respectively. See Section 3.3 for more details. Standard errors are estimated
via 10,000 bootstrap samples. Sources: SIPP:Survey of Income and Program Participation 1996, 2001,
2003, and 2008 panels. CPS-DWS Current Population Survey - Displaced Workers Survey 1984-2016.
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overall result is that search frictions explain about 15% to 25% of the variance in wages depending

on the subgroup.

The results for the wage-growth statistics are presented in Table 4. We measure the fraction

Pr(∆w < 0) = 0.576 using the SIPP data and Pr(∆w < 0) = 0.587 using the CPS data. Correcting

the fraction for measurement error increases it by about 0.015 in both samples to P̃ r(∆w < 0) =

0.590 and P̃ r(∆w < 0) = 0.603, respectively for SIPP and CPS. We use the corrected statistics to

calculate the bounds on receiving no job offers while employed (see Equation 4). The results suggest

that at least about 40% workers experience no frictional wage growth over an employment spell in

the sense that they receive additional offers. Finally, we report the measurement error corrected

implied value of κ, which is denoted by κ̂corr. Our results imply that, on average, workers are

more likely to receive a job destruction shock than a job offer shock when employed. The results

for the education sub-samples reveal important heterogeneity. On one hand, workers with less

than a college degree exhibit some frictional wage growth, where the fraction of workers with no

frictional wage growth is smaller and κ̂corr is above one. On the other hand, our results indicate

that workers with a college degree experience almost no frictional wage growth. We find that at

least 60 percent to 100 percent of college-educated workers experience no frictional wage growth

during an employment spell, in the SIPP and CPS respectively. Put another way, we estimate κ̂corr

to be about 0.5 and zero for workers with a college degree, in the SIPP and CPS respectively.

Finally, we investigate how the statistics vary over time. Panel A in Figure 3 shows the wage-

dispersion statistic for both the CPS and SIPP across time uncorrected for measurement error.

While there is no clear pattern with respect to the business cycle, there is a positive trend. This is

evidence that frictional wage dispersion has been decreasing over time since the 1980s. For example,

we estimate frictional wage dispersion to account for about 25 percent of the variance in wages in

the 1980s (1982-1990), while only about 14 percent in the last ten years (2006-2014) of the CPS-

DWS. Panel B in Figure 3 shows the wage-growth statistic for both samples. While the estimates

are not very precise, there is a clear counter-cyclical relationship with a higher fraction of workers

earning lower wages if they lose their job during (or just after) a recession. This is consistent with

our analysis, where we would expect that the average number of job offers accumulated by workers

is at its highest at the end of an expansion.

In this section, we computed the wage-growth and wage-dispersion statistics using two different

samples. There are two overall conclusions based on these findings. First, the estimated wage-

dispersion statistics show that search frictions explain about 20 percent of wage dispersion over

the entire time period, but has become less important recently (about 14 percent). Second, we do

not see evidence of a lot of frictional wage growth. We estimate that between 40 and 80 percent of

52About 9 percent of the CPS-DWS sample reports identical pre- and post-displacement nominal wages. These are all
recorded as wage losses in real terms. If these are not included, then the estimated uncorrected wage-growth statistics
are 0.534, 0.571, 0.556, 0.432, for the full sample, high school, some college, and college graduate samples, respectively.
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Table 4: Results on Wage-Growth Statistic

N P̂ r(∆w < 0) P̂ rcorr(∆w < 0) P̂ rcorr(n = 1) κ̂corr

Displaced (SIPP) 1914 0.587 0.603 [0.381, 0.794] 0.872
(0.011) (0.013) (0.079, 0.026) (0.154)

High School or less 795 0.556 0.566 [0.602, 0.867] 0.492
(0.018) (0.021) (0.124, 0.041) (0.192)

Some College 686 0.643 0.668 [0.0, 0.664] 1.841
(0.018) (0.021) (0.125, 0.042) (0.407)

College Graduate 433 0.557 0.567 [0.598, 0.866] 0.498
(0.024) (0.028) (0.171, 0.057) (0.267)

Plant closure (CPS-DWS) 2241 0.576 0.590 [0.460, 0.820] 0.725
(0.010) (0.012) (0.074, 0.025) (0.132)

High School or less 813 0.605 0.624 [0.255, 0.751] 1.136
(0.017) (0.020) (0.120, 0.040) (0.275)

Some College 916 0.597 0.615 [0.311, 0.770] 1.013
(0.016) (0.019) (0.113, 0.038) (0.242)

College Graduate 512 0.492 0.491 [1.000, 1.000] 0.000
(0.022) (0.026) (0.072, 0.024) (0.082)

Notes: Standard errors in parenthesis. Sample selection: prime aged (25-54 years old), full-time, private-
sector workers, not working in agriculture or construction, who made a full-time private sector to
full-time private sector transition. Displaced workers in the SIPP sample includes workers who were
displaced due to a layoff, employer bankruptcy, or slack work conditions. The CPS-DWS sample includes
workers who were displaced due to a plant closing.52 λrel∆w is the average reliability ratio for men and
women from Bound and Krueger (1991) (λrel∆w = 0.711). P̂ rcorr(n = 1) shows the bounds on the fraction
of workers receiving zero job offers during the last employment spell after correcting for measurement
error. κ̂corr is the implied κ after correcting for measurement error. See Section 3.3 for more details.
Standard errors are estimated via 10,000 bootstrap samples. Sources: SIPP:Survey of Income and
Program Participation 1996, 2001, 2003, and 2008 panels. CPS-DWS Current Population Survey -
Displaced Workers Survey 1984-2016.
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Figure 3: Time Series of Sufficient Statistics
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workers no frictional wage growth during an employment spell. We do find however, that frictional

wage growth becomes more important at the end of economic expansions. The job offer and

job destruction rates implied by the wage-growth statistic are different than those implied by

looking at job-to-job and job-to-unemployment transition rates in the data.53 In the next section,

we structurally estimate two versions of a search model in order to show how the wage-growth

statistic can be reconciled with observed the transition rates within a search model.

4 Using the Statistics in Structural Estimation

In this section we estimate two on-the-job search models with human capital accumulation. The

purpose of this is three-fold. First, we show how search models can be consistent with both our

frictional wage-growth statistic and the observed job-to-job mobility in the data. At least two

mechanisms can bridge the gap: involuntary job-to-job transitions and compensating differentials.

Second, we demonstrate how our two proposed statistics can be used to estimate on-the-job search

models. Third, we can use the estimated models to decompose cross-sectional wage dispersion and

life-cycle wage growth into frictional and learning-by-doing human capital components. Although

the fraction of displaced workers experiencing a wage loss identifies κ, a model is needed to quantify

the relative importance of the mechanisms driving life-cycle wage growth.

4.1 Model

We set up a continuous-time, infinite-horizon model of the labor market, where agents discount the

future at rate ρ. Workers have ex ante heterogeneous levels of permanent ability (α). Furthermore,

they accumulate human capital (k) via learning-by-doing when employed, where k is discrete

and has finite support (k ∈ {0, ...,K}). Workers enter the labor market with k = 0 and draw their

permanent ability from the ability distribution H(α). Firms are heterogeneous in their productivity

(p) and in the non-pecuniary aspect of the job (z). They produce log output α+p+f(k). Workers

draw job offers from the bivariate offer distribution F (p, z).

Unemployed workers receive a flow utility that is a function of their ability and learning-by-

doing human capital (u0(α, k)). While unemployed, they receive job offers at rate λu and do not

accumulate human capital. Once they receive a job offer they must choose either to accept it and

become employed or reject it and remain unemployed.54

53 The observed JJ flow rate is the offer arrival rate times the fraction of jobs accepted, which in the job ladder model
is

Pr(J → J) = λe
∫

[1− F (w)]dG(w) =
δ(λe + δ) ln(λ

e+δ
δ )− λeδ

λe
.

This can be derived analogously to Equation 6 in our paper or using steady state arguments as in is Hornstein, Krusell,
and Violante (2011) (Equation 15 in their paper). In Section 4.2, we estimate the annual transition rates Pr(J → U) =
δ = 0.109 and Pr(J → J) = 0.109. The implied λe from the above equation is then λe = .427, which corresponds to
κ = 3.922, which is more than 4.5 times higher than the κ̂corr = 0.73− 0.87 we estimate from the wage-growth statistic.

54In our empirical specification we assume that unemployed workers choose to accept all job offers.
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An employed worker with ability α and human capital k receives flow utility u1(α, p, k, z) when

working at a (p, z) firm.55 Employed workers receive job offers at rate λe, which they can accept or

decline. They also receive involuntary job offers at rate λd, which can only be rejected by entering

unemployment.56 At rate λh, their human capital increases by one unit via learning-by-doing for

k < K. Finally, they receive job separation shocks at rate δ, and become unemployed.57

4.2 Estimation

In this section we describe the parametrization and estimation of the model.

Model Specification and Parameterization The flow utility of an employed worker is

additively separable in log(wage) and the non-pecuniary aspect,

u1(α, p, k) = log(wage) + z = α+ f(k) + p+ z.

Worker ability is normally distributed following α ∼ N(µ, σα). We assume that p and z are

independently distributed.58 We let p and z be log-normally distributed, where p ∼ LN(0, σp) and

z ∼ LN(0, σz).
59 We let f(k) = β1k + β2k

2 and set K = 20. Finally, wages are observed with

measurement error ε ∼ N(0, σε).

For reasons of tractability, we assume that unemployed workers accept all job offers.60 Thus,

we implicitly assume that the value of staying unemployed and taking a job at the worst firm is

the same for all k.61

Poisson rates are measured in annual terms. We fix ρ = 0.05 and normalize λh = 1, which

leaves eleven free parameters (δ, λu, λe, λd, µ, σp, σα, χ1, χ2, σε,σz).

We estimate two versions of the model to show how our statistics discipline wage dispersion

and wage growth in different settings. In the first version, the ”wage-ladder” model, we fix σz = 0

55Note, that workers simply receive their full productivity, α+ p+ f(k). Thus, firms take a passive role in this model.
In Section 4, we will explore how sequential bargaining affects the wage-growth statistic.

56Again, note that in our specification unemployed workers will choose to accept all job offers, so employed workers
will always accept involuntary job offers over unemployment.

57See Appendix Section D.1 for the value functions.
58Taber and Vejlin (2020) find that this is approximately the case in a model without any restrictions on the covariance

between p and z.
59In a previous version, we have also estimated the model with exponential distributions. This choice is not critical,

but using log-normal distributions, we can more easily correlate the two distributions, which is done as a robustness
check.

60Since entering employment carries the option value of increasing human capital the flow utility of an unemployed
worker will be higher than or equal to that of working for the firm which offers the lowest utility. However, calculating
exactly how the flow utility depends on the level of human capital such that this is the case complicates the solution.

61We are not the first to assume this. Our model is closely related to that of Bagger, Fontaine, Postel-Vinay, and
Robin (2014), which introduce human capital into a sequential-auction model with bargaining. In order to avoid dealing
with reservation wages they implicitly make the same assumption.
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and allow for involuntary job offers. In the second version, the ”compensating differential” model,

we fix λd = 0 and include non-pecuniary aspects of the job. Each model has ten free parameters.

All workers enter the model as unemployed and with zero human capital (k = 0). We simulate

workers for 25 years and auxiliary parameters are calculated using data from year 2 to year 25.62

As the solution and simulation of the model are not a novel aspect of this paper, we provide a full

description in Appendix Section D.2.

Auxiliary Parameters We estimate the model by indirect inference (Gourieroux, Monfort,

and Renault 1993) using the bootstrap covariance matrix for the auxiliary parameters as a weight-

ing matrix. We use two datasets to measure the auxiliary parameters. The 1979 National Longi-

tudinal Survey of Youth (NLSY79) is a nationally representative panel that follows respondents

starting at ages 14-22 when first interviewed in 1979. NLSY79 respondents have been interviewed

either annually or biennially since 1979. We calculate transition rates and wage statistics using

the NLSY79 and use the SIPP (see Section 3.1) to calculate the wage-growth and wage-dispersion

statistics and measurement error moments.63 All auxiliary parameters are calculating for workers

who hold full-time private-sector employment. Here we give a brief description of the auxiliary

parameters used for estimation.64

The auxiliary parameters targeting the transitions parameters are calculated as the yearly

probabilities of being displaced (Pr(E→U)), taking a job out of unemployment (Pr(U→E)), and

making a job-to-job transition (Pr(E→E)) in the NLSY79. These transition rates help identify the

job offer and job destruction rates in the models (λu, λe, δ).

Frictional wage dispersion and wage growth are disciplined by the statistics studied in this

paper. We use the SIPP to calculate the frictional wage dispersion (corr(wprex , wpostx )) and the fric-

tional wage-growth statistics (Pr(wpostx < wprex )). These auxiliary parameters discipline the amount

of frictional wage dispersion and frictional wage growth in the model. The wage-dispersion statistics

identifies the variation in firm types, σp. In the wage-ladder model, the wage-growth statistic helps

identify the involuntary job offer arrival rate (λd). While in the compensating differentials model,

the wage-growth statistic helps identify the non-pecuniary parameter (σz). The auxiliary parameter

for the measurement error, σε is the within-job wage correlation (Corr(wt, wt+0.33|within match)).

It uses wages measured from two consecutive waves (four months apart) in the CS SIPP sample

(see Section 3.1).

Lifecycle wage growth parameters are measured by estimating a Mincer regression on experience

and experience squared in the NLSY79. The intercept (ζ0), linear coefficient (ζ1), and quadratic

62Ignoring the first years after labor market entry is also done in Bagger, Fontaine, Postel-Vinay, and Robin (2014) in
order to avoid noise in the real data from the early part of a labor market, where the transition from school to work can
take some time and this is not modelled.

63Notice that the sample selection for the structural estimation is different than in Section 3.1 and the values differ
slightly for that reason. The main difference between the two calculations is that the model estimation conditions on 2-25
years of experience.

64The full details on how the auxiliary parameters are constructed can be found in Appendix Section E.
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coefficient (ζ2) are used as auxiliary parameters to identify µ, χ1, χ2, respectively. The standard

deviation (σw) of wages are also measured in the NLSY79 and helps to identify σα.

Fit and Estimates Table 5 shows the fit of the auxiliary parameters for each model.

Table 5: Auxiliary Parameter Fit

Wage Ladder Compensating
Model Differential Model Data

Pr(J→U) 0.109 0.109 0.109
Pr(U→J) 0.639 0.639 0.639
Pr(J→J) 0.109 0.109 0.109
Pr(wpostx < wprex ) 0.570 0.570 0.570
σw 0.574 0.574 0.574
corr(wprex , wpostx ) 0.755 0.755 0.755
ζ0 2.292 2.290 2.291
ζ1 0.028 0.028 0.028
ζ2 × 100 -0.033 -0.034 -0.034
Corr(wt, wt+0.33|within match) 0.882 0.882 0.882

The model is simulated using 5.000.000 worker histories from year 0 to year 25. Notice that the data values differ slightly from Section 3.1.
The main reason between the two calculations is that the model estimation conditions on 2-25 years of experience.

Both estimated models fit the data to almost four significant digits. This is not surprising given

that we have just as many structural parameters as auxiliary parameters, but it is not guaranteed

in non-linear models.

In Table 6 we show the resulting parameter estimates. Almost all are statistically significant.65

We find that the variance of worker ability is much higher than the variance of firm productivity

and measurement error. This is expected given the high correlation of pre- and post-displacement

wages, which we show in Section 2.2 is closely related to the fraction of the total variance explained

by between worker differences. Also notice, that we find λd to 0.052 in the wage-ladder model,

implying that workers receive an involuntary job offer shock on average once every seventeen

years. It is the relatively high value of λd that allows us to reconcile the large job-to-job flows with

the wage-growth statistic.66 On average an involuntary job-to-job shock throws the worker down

65Standard errors are computed using the formula in Gourieroux, Monfort, and Renault (1993). Because of simulation
error the auxiliary parameters are not continuous in the parameters. Thus, taking numerical derivatives cannot be done
in the usual way. In order to overcome this problem we do a Taylor expansion around the estimated parameter values.
Specifically, we simulate the auxiliary parameters for different values of the parameters using a uniform grid of parameter
values around the estimated parameter (25 percent deviation) and then fit the binding function by a linear function in
the parameter values. We then use this function to take the derivative at the estimated parameter values. The numerical
derivatives are robust to using upto a third order polynomial and using different values of the deviations.

66The estimate is fairly close to Bagger and Lentz (2019), who finds a value of 0.078 using Danish data.
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Table 6: Structural Parameter Estimates

Wage-Ladder Model Compensating Differential Model
Parameter Value Std. Err. Parameter Value Std. Err.

δ 0.116 0.002 0.116 0.002
λu 1.108 0.029 1.109 0.029
λe 0.173 0.034 0.424 0.010
λd 0.052 0.010 - -
σα 0.476 0.007 0.475 0.007
σp 0.194 0.010 0.189 0.009
µ 1.284 0.010 1.279 0.010
χ1 0.018 0.003 0.018 0.003
χ2 × 100 0.017 0.011 0.015 0.012
σε 0.196 0.003 0.220 0.003
σz - - 0.312 0.064

Standard errors are computed using the formula in Gourieroux, Monfort, and Renault (1993). The standard deviation of the firm effect (p) is
0.200 and 0.194 in the wage-ladder model and the compensating differential model, respectively. The standard deviation of the non-pecuniary
aspect of a job (z) is 0.336 in the compensating differential model.

the job ladder. This makes future job-to-job transitions more likely, since the worker is now at a

lower rung in the firm productivity distribution and thereby accepts more of the offers that he

receives.

In the compensating differential model, we find σz = 0.312, which implies that the standard

deviation of the non-pecuniary aspect is 0.336. Thus, the non-pecuniary aspect is more important

than the differences in firm productivity (σp = 0.189). Because the non-pecuniary aspect of job

is so important, workers often select jobs primarily based on that. The compensating differential

model matches the large job-to-job flows in the data by estimating a high λe, but does so without

much frictional wage growth, consistent with the wage-growth statistic.

If we calculate κ from the wage-ladder and compensating differential model, we get 1.03 and

3.66, respectively. The inferred κ from the wage-growth statistic is 0.872. The small difference

between the implied κ and the κ in the wage-ladder model is most likely due to differences in the

sample compositions. κ in the compensating differential model is not consistent with the wage-

growth statistics calculation. This is not unexpected either, since in the compensating differential

model the wage is not an order statistic of the job value. Regardless, we will see that the inference

on wage growth is consistent across both models.

Non-targeted Auxiliary Parameters In Table 7 we present non-targeted auxiliary statis-

tics that are not used in the estimation procedure next to values from our data.

67The most common ”involuntary” reasons are ”On layoff”, ”Other family/personal obligations”, ”Discharged/fired”,
”Employer bankrupt”, ”Employer sold business”, ”Job was temporary and ended”, and ”Slack work or business condi-
tions”.
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Table 7: Non-targeted Auxiliary Parameters

Wage-Ladder Compensating Data Std. Err.
Model Differential Model

E(∆w|JJ) 0.088 0.087 0.076 (0.007)
V ar(∆w|JJ) 0.147 0.146 0.160 (0.007)
Fraction JJ Wage Loss 0.396 0.411 0.368 (0.009)
E(∆w|JUJ) -0.069 -0.071 -0.068 (0.010)
E(∆w|JUJ, high-tenure) -0.092 -0.091 -0.104 (0.018)
Fraction Invol JJ 0.443 0.000 0.216 (0.004)

The table reports non-targeted auxiliary statistics, which are commonly used in the estimation of search models. JUJ moments are calculated
using the SIPP JUJ sample, and the JJ moments use the CS SIPP sample. ”Voluntary” JJ transitions are defined as transitions where
workers change jobs for the following three reasons (1) ”Quit to take another job (2) Unsatisfactory working arrangements”, and (3) Quit for
some other reason. The remaining reasons are unrelated to the jobs and are considered involuntary.67 High-tenure is defined at having more
than 3 years of tenure. Column (4) shows the standard error on the estimate from the data.

The non-targeted statistics in our estimated models are not as far away from the data as we

would have expected. However, there are still differences. The average wage change for workers

making a job-to-job transition is 7.6 percent in the data, but it is 16 percent higher in the models.

Turning to the fraction of workers who experience a JJ wage loss, we find the moment to be

around 10 percent higher than in the data. Again, if we had targeted this moment instead of the

wage-growth statistics then we would have needed a lower λd again implying that frictional wage

growth would be higher.

The two next rows report the wage change around unemployment. In average wage change for

the full population is the same in the data as in the models, but the wage change is larger in the

data for high-tenure workers. In general, these two moments would speak to the identification of σp.

If we had wanted to target the wage change for high-tenure workers instead of the wage-dispersion

statistic then we would have needed a higher estimate of σp, which would imply that frictional

wage dispersion would have been higher.

Finally, in the last row, we report the fraction of job-to-job transitions that are voluntary. The

large difference between the fraction of involuntary JJ transitions in the wage-ladder model and

the data is due to the fact that the only way the model can generate a low enough wage-growth

statistic, while still matching the observed transition rates, is by setting λd fairly high resulting in

many involuntary job transitions. We will return to this problem in a robustness exercise, where

we estimate a joint version of the model.

4.3 Results

We use the model to make two kinds of decompositions. First, we show how much of the variance

of wages is caused by frictional wage dispersion and secondly, how much of life-cycle wage growth

is caused by frictional wage growth compared to human capital induced wage growth.
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Frictional Wage Dispersion In order to show the importance of frictional wage dispersion,

we decompose the variance of wages in Table 8 for the wage-ladder model and the compensating

differential model.68 The first thing to note, is that even though the two models substantially

differ, the estimated variance decompositions are very similar. First, we take out variance caused

by measurement error, since this is not relevant for workers. In both models we estimate that around

12 percent of the variance in wages is due to measurement error. This decreases the variance from

0.331 to 0.293 in the two models. We then decompose the true wage variance into four components

var(w̃) = var(α) + var(p) + var(f(k)) + 2cov(p, f(k))

where w̃ is the true wage without measurement error. The co-variances between the worker type,

α, and the firm component, p, and the human capital component, f(k)), are zero by construction.

Table 8: Wage Variance Decomposition

Wage-Ladder Compensating
Model Differential Model

Variance Share Variance Share
Wage Var 0.331 0.331
Var(ε) 0.039 0.039
Wage Var Without Meas Err (ε) 0.293 0.293
Var(α) 0.226 0.774 0.225 0.770
Var(p) 0.043 0.146 0.044 0.150
Var(f(k)) 0.019 0.064 0.019 0.066
2 Cov(p, f(k)) 0.005 0.016 0.004 0.015

Notes: The table shows a linear decomposition of the wage variance taking out measurement error for
each model. It decomposes the true variance into a worker component (Var(α)), a firm component
(Var(p)), a human capital component (Var(f(k))) and the covariance between the worker and firm
components (2 Cov(p, f(k)).

From the results it is clear that the main part of the variance is explained by worker hetero-

geneity as also suggested by the wage-dispersion statistic, which showed that the correlation of

pre- and post-displacement wages were 0.755. Differences in firm productivity account for about

15 percent across the two models, while human capital accumulation matters to a smaller extent,

about 6-7 percent. This is to be expected as a simple Mincer regression of wages on experience

typically do not explain much more than 5-7 percent of wage variation.

68This is the variance of wages measured in the annual repeated cross-sections from year 1 to year 25 in the labor
market.
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Life-Cycle Wage Growth We now move to the second question of how much of life-cycle

wage growth is caused by frictional wage growth. Figure 4 contains two sub-figures, one for each

model. In each sub-figure we plot three graphs. First, we plot the average wage by years since labor

market entry from the real data together with the 95 percent confidence interval. Second, we plot

the average wage from the model and finally, we plot the average wage from the model imposing

that there is no human capital accumulation (χ1 = χ2 = 0), so the only reason wages go up over

the life-cycle is frictional wage growth due to workers climbing the productivity ladder.

Figure 4: Life-Cycle Wages

(a) Wage-Ladder Model (b) Compensating Differential Model

Notes: The plot of the real data (”Raw Data”) uses the same NLSY data as we used in the estimation except
that here we also plot data after the first year in the labor market. The simulated data is from the model,
where we simulate workers from labor market entry (at time zero), where they enter as unemployed, to 25
years after. Frictional wage growth is measured by simulating the model setting χ1 = χ2 = 0, while human
capital wage growth is the difference in growth between total wage growth and frictional wage growth.

Figure 4 shows that the model fit is excellent for both models in terms of matching the life-cycle

wage profile from the data. As was the case for the variance decomposition of wages, the results

from the two models are strikingly similar. Comparing the full models with the models without

any return to human capital accumulation, it is clear that early in the life cycle both human

capital accumulation and frictional wage growth play important roles for the overall wage growth.

However, after the first 5-10 years frictional wage growth is negligible.

Table 4 decomposes total wage growth from labor market entry to 25 years into human capital

wage growth and frictional wage growth. Search frictions account for about 15 percent of the total

wage growth over the first 25 years of the life cycle in both models.

Finally, as indicated by Figure 4 the relative roles of human capital and frictions in generating

wage growth varies over the life-cycle. In Figure 5 we show the differences in yearly average wages
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Table 9: Decomposition of Wage Growth At 25 Years of Experience

Wage-Ladder Model Compensating Differential Model
Wage Growth Share Wage Growth Share

Total Wage Growth 0.451 0.455
Human Capital Wage Growth 0.381 0.844 0.387 0.851
Frictional Wage Growth 0.070 0.156 0.068 0.149

Notes: The table decompose total wage growth from labor market entry to 25 years after into human
capital wage growth and frictional wage growth. Frictional wage growth is measured by simulating the
model setting χ1 = χ2 = 0, while human capital wage growth is the difference in growth between total

wage growth and frictional wage growth.

in the full model (labeled Total Wage Growth) and in the model without any human capital

accumulation (labeled Frictional Wage Growth). Finally, we show the difference between the two

(labeled Human Capital Wage Growth).69

Figure 5: Wage Growth Decomposition

(a) Wage-Ladder Model (b) Compensating Differential Model

It is clear from Figure 5 that in the early part of a worker’s career frictional induced wage

growth is actually around the same level as human capital wage growth. After about 10 years, the

average frictional wage growth is zero.

We draw the following conclusions based on the results presented from the structural model.

69Notice that the reason that human capital wage growth has an inverse U-shape is that the return to human capital
is convex (χ2 > 0), which causes the small increase in the growth rate until around year 15. Human capital wage growth
begins to decline as workers start to obtain the maximum human capital level, K. Recall, that learning-by-doing human
capital arrives stochastically.
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First, the different κ’s implied by the two models suggest that one should be careful by estimating

involuntary job offer shocks from transition rates, since a model with compensating differentials

would imply a very different value. Second, even though the κ’s were very different, the amount of

frictional wage growth in the two models were surprisingly similar. This shows how the wage-growth

statistic can discipline the frictional wage growth across different types of models.

4.4 Robustness of Structural Estimation

We perform several robustness checks of the estimated models. First, we estimate versions of the

compensating differential model, where firm productivity and non-pecuniary aspects are allowed

to be correlated with correlations of -0.17 and -0.5 (Models (1) and (2)). Second, we estimate a

version of the model, where the job offer distributions of employed and unemployed differ, which

departs from the assumptions needed for the derivation of the statistics (Model (3)). Finally, we

estimate a version of the model, which encompass both of the baseline models (Models (4)). We

discuss each model and the results of the estimations in online Appendix Section F.3. We conclude

that our estimates of frictional wage growth and frictional wage dispersion are robust to violations

of the identifying assumptions examined here.70

5 Conclusions

In this paper, we present two sufficient statistics. The first is the correlation of pre- and post-

displacement wages, which is informative of frictional wage dispersion. The second is the fraction

of workers earning less after an unemployment spell, which is informative of frictional wage growth.

We show how these statistics are informative across a large class of search models independent

of wage offer distributions and other labor market parameters. We estimate the statistics using

displaced workers in both CPS and SIPP data. We find that frictional wage dispersion explains less

than 20 percent of the variation in wages and likewise, workers receive few wage improving offers

during an employment spell. In other words, the wage-growth statistic implies modest frictional

wage growth. While there is not much heterogeneity in the wage-dispersion statistic, we find

that college-educated workers experience almost no frictional wage growth. Calculating the two

statistics over time, we find that frictional wage dispersion has declined by about half since the

80’s. This is in line with improvements in the matching technology such as the emergence of online

job databases. Furthermore, frictional wage growth is higher at the end of expansion periods, which

is consistent with workers receiving more jobs offers during periods of economic growth. We use

the statistics to estimate two different models of the labor market: a wage-ladder model and a

compensating differential model. While the implied job offer rates depend on the details of the

model, the importance of frictional wage dispersion and frictional wage growth is estimated to be

70See identifying assumptions in Section 2.
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almost identical across the two models. Frictional wage dispersion is around 16-17 percent of total

wage dispersion while frictional wage growth is about 15 percent of the life-cycle wage growth.
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A Mathematical Derivations

A.1 Derivation of Frictional Wage-Dispersion Statistic: Cov(wpost, wpre)

Let µxs = EFxs [w
post
xs ] be the conditional mean of the job offer distribution for workers of

type x in economic state s and ∆µxs = EGxs [w
pre
xs ]− µxs be the difference in the conditional
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means of the Gxs(w) and the Fxs(w) distributions for workers of type x in economics state

s. If the post-displacement wage wpostxs is independent of the pre-displacement wage wprexs ,

then the population covariance is

Cov(wpost, wpre) = V ar(µ) + Cov(µ,∆µ).

The covariance depends only on the variation in the means of the worker type and economic

state specific distributions and is independent of the shape of the distributions.

There are three distributions that need to be integrated over to calculate the covariance:

(1) the expectation over types and states denoted as Exs, (2) the expectation over the wage

offer distribution conditional on type x and state s (EFxs), and (3) the expectation over

the pre-displacement wage distribution conditional on type x and state s (EGxs). Without

loss of generality, we decompose wages into the type- and state-specific mean µxs and the

demeaned wage.

wpostxs = µxs + εxs

wprexs = µxs + ηxs.

Note that, by definition of µxs, EFxs [εxs] = 0, while EGxs [ηxs] = ∆µxs has a non-zero mean.

The covariance is

cov(wpost, wpre) = E[wpostwpre]− E[wpost]E[wpre]. (10)

The first term on the RHS in Equation 10 becomes

E[wpostwpre] = Exs
{
EFxsGxs [w

post
xs wprexs ]

}
= Exs

{
EFxsGxs [µ

2
xs + εxsµxs + µxsηxs + εxsηxs]

}
= Exs

{
µ2
xs + µxsEFxs [εxs] + µxsEGxs [ηxs] + EFxsGxs [εxsηxs]

}
= Exs[µ

2
xs + µxs∆µxs],

where we used EFxs [εxs] = 0 and EFxsGxs [εxsηxs] = EGxs [EFxs [εxsηxs]] = EGxs [ηxsEFxs [εxs]] =

0, due to the independence of wpostxs and wprexs conditional on type t and state s.

The second term on the RHS in Equation 10 becomes

E[wpost]E[wpre] = Exs
{
EFxs [w

post
xs ]

}
Exs {EGxs [wprexs ]}

= Exs[µxs]Exs[µxs + ∆µxs].
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We finish the derivation by combining the two terms and putting them back into Equation 10

Cov(wpost, wpre) = Exs[µ
2
xs] + Exs[µxs∆µxs]− Exs[µxs]Exs[µxs]− Exs[µxs]Exs[∆µxs]

= Exs[µ
2
xs]− Exs[µxs]Exs[µxs] + Exs[µxs∆µxs]− Exs[µxs]Exs[∆µxs]

= V ar(µ) + Cov(µ,∆µ).

A.2 The Frictional Wage-Growth Statistic and κx

In order to compare our statistic to the literature, we would like to relate the wage-

growth statistic to fundamental parameters from on-the-job search models, namely the

time-invariant Poisson job separation rate (δx) and the time-invariant Poisson on-the-job

offer rate (λex). These two parameters determine the probability distribution of the number

of job offers a worker receives during an employment spell. Specifically, the probability of

receiving n− 1 additional offers is

Prx(n) =

(
λex

λex + δx

)n−1
δx

λex + δx

from the literature on Poisson processes (see e.g. Gallager 2013).71 Recall that the prob-

ability of earning a lower wage after being displaced conditional on receiving n job offers

is Pr(wpost < wpre|n) = n
n+1

. The relationship between the wage-growth statistic and the

Poisson parameters of the on-the-job search model is then

Prx(w
post
x < wprex ) =

δx
λex + δx

∞∑
n=1

n

n+ 1

(
λex

λex + δx

)n−1

=
1

κx

∞∑
n=0

n

n+ 1

(
κx

κx + 1

)n
=

1

κx

[
∞∑
n=0

(
κx

κx + 1

)n
−
∞∑
n=0

1

n+ 1

(
κx

κx + 1

)n]

= 1− (κx + 1) ln(κx + 1)− κx
κ2
x

,

where κx = λex/δx, the geometric series
∑∞

n=0
1
rn

= 1
1−r , and ln(z) =

∑∞
n=1

1
n

(
z−1
z

)n
.

71The probability that the k th arrival of Poisson process 1 occurs before the j th arrival of Poisson process 2 is

Pr(S1
k < S2

j ) =

k+j−1∑
i=k

(
k + j − 1

i

)(
λ1

λ1 + λ2

)i(
λ2

λ1 + λ2

)k+j−1−i

.
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A.3 Extension to Sequential-Auction Model

Proposition 2.1 Consider a job offer history for a worker of type x, where the highest

pre-displacement offer is ppre1 , the second-highest pre-displacement offer is at least as large

as the flow value of unemployment ppre1 ≥ ppre2 ≥ bx, and the post-displacement offer is ppost1 .

If ppost1 < ppre1 and βx >
λx

2λx+ρx
, then w(ppost1 , bx) < w(ppre1 , ppre2 ).

Proof. The proof proceeds in two steps. First, we show that if βx >
λx

2λx+ρx
, then ∂w

∂p1
> 0.

Second, we show that if ∂w
∂p1

> 0, then the w(ppost1 , bx) < w(ppre1 , ppre2 ) if ppost1 < ppre1 .

First, the derivative of Equation 8 with respect to the highest wage received, p1, is

∂w

∂p1

= 1− (1− βx)
ρx + λxF̄x(p1)

ρx + βxλxF̄x(p1)

We want to find a value of βx such that the derivative is positive for all values of p1. It is

easy to see that the derivative is positive when βx = 1 or when p1 = pmaxx (F̄x(p
max
x ) = 0).

Also note that the derivative is increasing in both p1 and βx. Hence, we look for a lower

bound on βx such that the derivative is positive when p1 = pminx (F̄x(p
min
x ) = 1).

∂w

∂p1

≥ ∂w

∂p1

(pminx ) = 1− (1− βx)
ρx + λx
ρx + βxλx

> 0

ρx + λxβx − (1− βx)(ρx + λx) > 0

βx >
λx

2λx + ρx
.

In the second step, we show that w(ppost1 , bx) ≤ w(ppre1 , ppre2 ) for ppost1 = ppre1 . Let Φx(z) =
ρx+λxF̄x(z)

ρx+λxβxF̄x(z)
. We can write the wage w(ppre1 , bx) in terms of w(ppre1 , ppre2 )

w(ppre1 , bx) = ppre1 − (1− βx)
∫ ppre1

bx

Φx(z)dz

= ppre1 − (1− βx)
∫ ppre1

ppre2

Φx(z)dz − (1− βx)
∫ ppre2

bx

Φx(z)dz

w(ppre1 , bx) = w(ppre1 , ppre2 )− (1− βx)
∫ ppre2

bx

Φx(z)dz.

Since (1− βx)
∫ ppre2

bx
Φx(z)dz ≥ 0, we have w(ppre1 , bx) ≤ w(ppre1 , ppre2 ). Now consider the case

when βx >
λx

2λx+ρx
and then ∂w

∂p1
> 0. It follows that w(ppost1 , bx) < w(ppre1 , ppre2 ) ∀ppost1 < ppre1 .
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